Jump to main content
Jump to site search

Issue 24, 2019
Previous Article Next Article

Chirality transfer between hexaazamacrocycles in heterodinuclear rare earth complexes

Author affiliations

Abstract

Both the chiral hexaazamacrocyle L1 based on trans-1,2-diaminocyclohexane and the achiral hexaazamacrocyle L2 based on ethylenediamine form lanthanide(III) dinuclear μ-hydroxo bridged complexes which have been characterized by NMR and CD spectroscopy. The homodinuclear complexes of the type [Ln2(L1)2(μ-OH)2](NO3)4 (Ln = NdIII, EuIII, TbIII and YbIII) have been synthesized in the enantiopure form and the X-ray crystal structures of NdIII, EuIII and YbIII derivatives have been determined. The heterodinuclear cationic complexes [Ln(L1)Ln′(L2)(μ-OH)2X2]n+ have been generated and characterized in solution by using the mononuclear complexes of L1 and L2 as substrates. While the formation of [LnLn′(L1)2(μ-OH)2X2]n+ dinuclear complexes is accompanied by chiral narcissistic self-sorting, the formation of [Ln(L1)Ln′(L2)(μ-OH)2X2]n+ dinuclear complexes is accompanied by the sizable sociable self-sorting of macrocyclic units. The homodinuclear complexes [Y2(L1)2(μ-OH)2X2]n+ and [Ln2(L2)2(μ-OH)2X2]n+ (Ln = DyIII, PrIII and NdIII) are CD silent in the visible region due to the lack of f–f transitions and the presence of an achiral ligand, respectively. In contrast, the heterodinuclear [Y(L1S)Ln(L2)(μ-OH)2X2]n+ complexes give rise to CD signals arising from the f–f transitions because of the chirality transfer from the L1 macrocyclic unit to the L2 macrocyclic unit.

Graphical abstract: Chirality transfer between hexaazamacrocycles in heterodinuclear rare earth complexes

Back to tab navigation

Supplementary files

Article information


Submitted
28 Mar 2019
Accepted
13 May 2019
First published
28 May 2019

Dalton Trans., 2019,48, 8717-8724
Article type
Paper

Chirality transfer between hexaazamacrocycles in heterodinuclear rare earth complexes

P. Starynowicz and J. Lisowski, Dalton Trans., 2019, 48, 8717
DOI: 10.1039/C9DT01318K

Social activity

Search articles by author

Spotlight

Advertisements