Jump to main content
Jump to site search

Issue 8, 2019
Previous Article Next Article

Novel ternary transition metal oxide solid solution: mesoporous Ni–Mn–Co–O nanowire arrays as an integrated anode for high-power lithium-ion batteries

Author affiliations

Abstract

Electrochemical performances of lithium-ion batteries depend strongly on the micro-nanostructures of active materials as well as electrode configurations. A reasonable design of both active materials and electrode configuration is of great importance to improving the electrochemical properties of the batteries. Here, we present the preparation and electrochemical properties of mesoporous Ni–Mn–Co–O oxide (NMCO) nanowire arrays (NWAs) directly grown on Cu substrates, which can be used as an integrated electrode for lithium-ion batteries. The electrochemical measurements show that the NMCO/Cu NWA integrated electrodes without binder exhibit enhanced cycling stability and high specific capacity compared with the NMCO nanowire electrode prepared by a conventional coating process. In addition, the NMCO/Cu-foam NWA integrated electrode constructed from porous copper exhibits outstanding cycle stability and rate capability compared with the NMCO/Cu-foil NWA integrated electrode based on a copper foil collector.

Graphical abstract: Novel ternary transition metal oxide solid solution: mesoporous Ni–Mn–Co–O nanowire arrays as an integrated anode for high-power lithium-ion batteries

Back to tab navigation

Supplementary files

Publication details

The article was received on 21 Nov 2018, accepted on 24 Jan 2019 and first published on 25 Jan 2019


Article type: Paper
DOI: 10.1039/C8DT04612C
Dalton Trans., 2019,48, 2741-2749

  •   Request permissions

    Novel ternary transition metal oxide solid solution: mesoporous Ni–Mn–Co–O nanowire arrays as an integrated anode for high-power lithium-ion batteries

    J. Zhou, D. Li, J. Han and X. Fan, Dalton Trans., 2019, 48, 2741
    DOI: 10.1039/C8DT04612C

Search articles by author

Spotlight

Advertisements