Issue 38, 2018

The mechanism and origin of the regioselectivity of cobalt-catalyzed annulation of allenes with benzamide: a computational study

Abstract

Thrimurtulu et al. recently reported unprecedented cobalt-catalyzed annulation of allenes with benzamide (N. Thrimurtulu, A. Dey, D. Maiti, C. M. R. Volla, Angew. Chem., Int. Ed., 2016, 55, 12361–12365). In this reaction, the substituent on the allene controls the regioselectivity for the formation of either dihydroisoquinolin-1(2H)-one or isoquinolin-1(2H)-one. In the present study, density functional theory calculations were performed to investigate the detailed reaction mechanism and the origin of the experimentally observed regioselectivity. A systematic search shows that the electronic and steric effects of the substituent on the allene determine which of the two allene insertions is followed, and thus determine the regioselectivity. The bulky diphenylphosphonate and two phenyl substituents of the allenylphosphonate and diarylallene favor C1[double bond, length as m-dash]C2 insertion, which eventually leads to the formation of isoquinolin-1(2H)-one. In contrast, for the arylallene, which has a relatively electron-rich C2[double bond, length as m-dash]C3 bond, C2[double bond, length as m-dash]C3 insertion is favored and eventually leads to the formation of dihydroisoquinolin-1(2H)-one. The calculations also explain why annulation rather than hydroarylation of benzamide with allenylphosphonate occurs with a cobalt catalyst.

Graphical abstract: The mechanism and origin of the regioselectivity of cobalt-catalyzed annulation of allenes with benzamide: a computational study

Supplementary files

Article information

Article type
Paper
Submitted
16 Jun 2018
Accepted
28 Aug 2018
First published
29 Aug 2018

Dalton Trans., 2018,47, 13592-13601

The mechanism and origin of the regioselectivity of cobalt-catalyzed annulation of allenes with benzamide: a computational study

X. Wu, X. Wen and J. Li, Dalton Trans., 2018, 47, 13592 DOI: 10.1039/C8DT02476F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements