Issue 29, 2018

Developing near-infrared long-lasting phosphorescence of Yb3+ through a medium: insights into energy transfer in the novel material Zn1.98Li0.02P2O7:Yb3+

Abstract

Near-infrared (NIR) long-lasting phosphorescence (LLP) phosphors have potential applications in biological and military fields. However, the properties of these phosphors are insufficient to satisfy the demands. Herein, we report a series of novel LLP phosphors Zn1.98−xLi0.02P2O7:xYb3+ with strong NIR LLP. By investigating the O–Yb3+ charge transfer (CT) band and host thoroughly, it can be confirmed that distinct photoluminescence (PL) of the two can be realized by selecting an appropriate excitation. For NIR emission, considering that the emission of Yb3+ originates from the characteristic 4f–4f transition between 4F5/2 and 4F7/2 levels and the difference between these two levels is too small to be excited by UV light, it is practicable to use the energy transfer of the host rather than that of the O–Yb3+ CT band as its energy level does not match with that of Yb3+. LLP is different from PL of the O–Yb3+ CT band, host or Yb3+, and it is strongly dependent on the appropriate depths of the traps; therefore, the selection and regulation of the traps are crucial. Considering the practicability and the demand of NIR LLP materials, we focus on how to excite Yb3+ and obtain LLP.

Graphical abstract: Developing near-infrared long-lasting phosphorescence of Yb3+ through a medium: insights into energy transfer in the novel material Zn1.98Li0.02P2O7:Yb3+

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
18 May 2018
Accepted
25 Jun 2018
First published
26 Jun 2018

Dalton Trans., 2018,47, 9814-9823

Developing near-infrared long-lasting phosphorescence of Yb3+ through a medium: insights into energy transfer in the novel material Zn1.98Li0.02P2O7:Yb3+

H. Li, R. Pang, S. Zhang, L. Lv, J. Feng, L. Jiang, D. Li, C. Li and H. Zhang, Dalton Trans., 2018, 47, 9814 DOI: 10.1039/C8DT02017E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements