Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 40, 2018
Previous Article Next Article

Concentration dependent supramolecular interconversions of triptycene-based cubic, prismatic, and tetrahedral structures

Author affiliations

Abstract

The quantitative, single step, self-assembly of a shape-persistent, three-dimensional C3v-symmetric, triptycene-based tris-terpyridinyl ligand initially gives a platonic-based cubic architecture, which was unequivocally characterized by 1D and 2D NMR spectroscopy, mass spectrometry, and single crystal X-ray structural analysis. The unique metal–ligand binding properties of the Cd2+ analogue of this construct give rise to a concentration-dependent dynamic equilibrium between cube, prism, and tetrahedron-shaped architectures. Dilution transforms this cube into two identical tetrahedra through a stable prism-shaped intermediate; increasing the concentration reverses the process.

Graphical abstract: Concentration dependent supramolecular interconversions of triptycene-based cubic, prismatic, and tetrahedral structures

Back to tab navigation

Supplementary files

Article information


Submitted
05 Dec 2017
Accepted
12 Jan 2018
First published
12 Jan 2018

Dalton Trans., 2018,47, 14189-14194
Article type
Paper

Concentration dependent supramolecular interconversions of triptycene-based cubic, prismatic, and tetrahedral structures

S. Chakraborty, K. J. Endres, R. Bera, L. Wojtas, C. N. Moorefield, M. J. Saunders, N. Das, C. Wesdemiotis and G. R. Newkome, Dalton Trans., 2018, 47, 14189
DOI: 10.1039/C7DT04571A

Social activity

Search articles by author

Spotlight

Advertisements