Issue 45, 2017

Two-step hydrothermally synthesized carbon nanodots/WO3 photocatalysts with enhanced photocatalytic performance

Abstract

In this study, carbon nanodots (C-dots)/WO3 photocatalysts were prepared via a two-step hydrothermal method. The morphologies and optical properties of the as-prepared materials were investigated. Compared with the prepared WO3 and C-dots, the C-dots/WO3 possessed stronger photocatalytic capability and excellent recyclability for photocatalytic elimination of Rhodamine B. For example, the achieved first order reaction rate constant of 0.01942 min−1 for C-dots/WO3 was ∼7.7 times higher than that of the prepared WO3. The enhanced photocatalytic activity of C-dots/WO3 was attributed to the enhanced light harvesting ability and efficient spatial separation of photo-excited electron–hole pairs resulting from the synergistic effect of WO3 and C-dots. The high photocatalytic activity of C-dots/WO3 remained unchanged even after 3 cycles of use. Meanwhile, a possible mechanism of C-dots/WO3 for the enhanced photocatalytic activity was proposed.

Graphical abstract: Two-step hydrothermally synthesized carbon nanodots/WO3 photocatalysts with enhanced photocatalytic performance

Supplementary files

Article information

Article type
Paper
Submitted
13 Aug 2017
Accepted
12 Oct 2017
First published
13 Oct 2017

Dalton Trans., 2017,46, 15769-15777

Two-step hydrothermally synthesized carbon nanodots/WO3 photocatalysts with enhanced photocatalytic performance

B. Song, T. Wang, H. Sun, Q. Shao, J. Zhao, K. Song, L. Hao, L. Wang and Z. Guo, Dalton Trans., 2017, 46, 15769 DOI: 10.1039/C7DT03003G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements