Issue 43, 2017

A mechanistic study of nitrite reduction on iron(ii) complexes of methylated N-confused porphyrins

Abstract

Proton delivery to the prosthetic group is a crucial step to sustain the activity of nitrite reductase. An iron N-confused porphyrin (NCP) complex, which is capable of relaying protons from the outer pyrrolic nitrogen (Nout–H) of the inverted pyrrole ring to the axial coordinated ligand, has been demonstrated to facilitate facile nitrite reduction. Time-dependent FTIR studies on the reaction between [FeII(HCTPPMe)Br] (1) and a nitrite anion revealed a two-step process involving conversion of the starting complex 1 to an {Fe(NO)}7 intermediate, [Fe(CTPPMe)(NO)] (5), before the detection of [Fe(CTPPCH2)(NO)] (3), an {Fe(NO)}6 end product. Moreover, spectroscopic data confirm that Nout–H on the NCP core is indispensable to the proceeding of the nitrite reduction reaction. Mass spectra have detected the coordination of a nitrite to the iron center while DFT theoretical calculations suggest that subsequent intramolecular proton transfer to a nitro group to form [Fe(CTPPMe)(HNO2)] (6a) evokes a homolytic N–OH bond fission on axial nitrous acid due to an enhanced π-back-bonding to produce an {Fe(NO)}7 intermediate and to release a hydroxyl radical. The subsequent oxidation of an {Fe(NO)}7 intermediate by the hydroxyl radical gave the final product, {Fe(NO)}6 [Fe(CTPPCH2)(NO)] (3). This study illustrates a proton assisted small molecule activation on the iron N-confused porphyrin coordination sphere and provides complemental insights into the mechanism of enzymatic nitrite reduction reactions.

Graphical abstract: A mechanistic study of nitrite reduction on iron(ii) complexes of methylated N-confused porphyrins

Supplementary files

Article information

Article type
Paper
Submitted
04 Aug 2017
Accepted
06 Oct 2017
First published
06 Oct 2017

Dalton Trans., 2017,46, 15087-15094

A mechanistic study of nitrite reduction on iron(II) complexes of methylated N-confused porphyrins

W. Ching, P. P. Chen and C. Hung, Dalton Trans., 2017, 46, 15087 DOI: 10.1039/C7DT02869E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements