Issue 8, 2017

Three new energetic complexes with N,N-bis(1H-tetrazole-5-yl)-amine as high energy density materials: syntheses, structures, characterization and effects on the thermal decomposition of RDX

Abstract

Three new energetic complexes, [Pb(bta)(H2O)]n (1), [PbCu(bta)2(H2O)5]·2H2O (2) and PbCu(bta)2 (3) (H2bta = N,N-bis(1H-tetrazole-5-yl)-amine), have been synthesized and characterised. In particular, 3 was readily synthesized by dehydration of 2 at 190 °C. Single crystal X-ray diffraction revealed that 1 has a 3D framework structure and 2 presents a 3D supermolecular architecture. Thermoanalyses demonstrated that the main frames of 1 and 2 have good thermostabilities up to 314 °C for 1 and 231 °C for 2. Non-isothermal kinetic and thermodynamic parameters of exothermic decomposition processes of 1 and 2 were obtained by Kissinger's and Ozawa's methods. Based on the constant-volume combustion energies measured by a precise rotating-bomb calorimeter, the standard molar enthalpies of formation of 1 and 2 were determined. The calculation of the detonation properties of 1 and 2 and the impact sensitivity tests of 1, 2 and 3 were carried out. In addition, 1, 2 and 3 were explored as combustion promoters to accelerate the thermal decompositions of RDX (1,3,5-trinitro-1,3,5-triazine) by differential scanning calorimetry. Experimental results showed that 1, 2 and 3 can be used as HEDMs in the field of combustion promoters and insensitive 2 can be regarded as a safer form for mass storage and transportation than sensitive 3.

Graphical abstract: Three new energetic complexes with N,N-bis(1H-tetrazole-5-yl)-amine as high energy density materials: syntheses, structures, characterization and effects on the thermal decomposition of RDX

Supplementary files

Article information

Article type
Paper
Submitted
23 Nov 2016
Accepted
23 Jan 2017
First published
23 Jan 2017

Dalton Trans., 2017,46, 2626-2634

Three new energetic complexes with N,N-bis(1H-tetrazole-5-yl)-amine as high energy density materials: syntheses, structures, characterization and effects on the thermal decomposition of RDX

Q. Yang, X. Song, W. Zhang, L. hou, Q. Gong, G. Xie, Q. Wei, S. Chen and S. Gao, Dalton Trans., 2017, 46, 2626 DOI: 10.1039/C6DT04439E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements