Issue 24, 2015

Water-assisted proton delivery and removal in bio-inspired hydrogen production catalysts

Abstract

Electrocatalysts for H2 production are envisioned to play an important role in renewable energy utilization systems. Nickel-based catalysts featuring pendant amines functioning as proton relays in the second coordination sphere of the metal center have led to catalysts achieving turnover frequencies as high as 107 s−1 for H2 production. The fastest rates are observed when water is present in solution, with rates up to 103 times faster than those found in dry solvent. The focus of this paper is to provide mechanistic insight into the unexpected enhancement due to water. Addition of H2 to [Ni(PCy2NR′2)2]2+ was previously shown to give three isomers of a Ni(0) product with two protonated amines, where the N–H can be endo or exo to the Ni. By investigating the deprotonation of these two N-protonated Ni(0) intermediates resulting from the addition of H2 to [Ni(PCy2NR′2)2]2+, we observe by NMR spectroscopy studies an enhancement in the rate of deprotonation for protons positioned on the pendant amine next to the metal (endo) vs. protons that are positioned away from the metal (exo). Computational studies suggest that for smaller bases, the desolvation energy of the exogenous base is the primary contribution limiting the rate of endo deprotonation, while steric accessibility and facile proton movement also contribute. For more bulky bases, steric accessibility can play the dominant role. The significant reduction in these barriers observed in the presence of water has important implications for disfavoring less productive catalytic pathways and increasing catalytic rates.

Graphical abstract: Water-assisted proton delivery and removal in bio-inspired hydrogen production catalysts

Supplementary files

Article information

Article type
Paper
Submitted
23 Feb 2015
Accepted
21 Apr 2015
First published
21 Apr 2015

Dalton Trans., 2015,44, 10969-10979

Author version available

Water-assisted proton delivery and removal in bio-inspired hydrogen production catalysts

M. Ho, M. O'Hagan, M. Dupuis, D. L. DuBois, R. M. Bullock, W. J. Shaw and S. Raugei, Dalton Trans., 2015, 44, 10969 DOI: 10.1039/C5DT00782H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements