Issue 6, 2014

Two new bismuth thiourea bromides: crystal structure, growth, and characterization

Abstract

Crystals of two new bismuth thiourea bromides, bismuth trithiourea bromide (Bi[CS(NH2)2]3Br3, BTB) and bismuth protonated-hexathiourea bromide (Bi[CS(NH2)2H]6Br9, BHB), have been successfully grown from hydrobromic acid solution with different pH values by slow evaporation. Single crystal X-ray diffraction reveals that BTB is isostructural to its Cl-analog crystallizing in a monoclinic space group Cc with unit cell dimensions of a = 8.6238(7) Å, b = 12.2506(11) Å, c = 15.5040(13) Å, β = 90.7810(10)° and Z = 4. In contrast, BHB crystallizes in a trigonal space group R[3 with combining macron]c with unit cell dimensions of a = b = 12.748(17) Å, c = 40.45(11) Å, and Z = 6. The protonation of the thiourea in BHB is confirmed by the structure solution, IR and Raman spectroscopy. The UV diffuse reflection spectra clearly indicate that both of the two crystals have good optical transparency in the range below 2000 nm. Both compounds decompose above 190 °C, and BHB melts at around 140 °C while BTB possesses a phase transition at 145 °C as indicated by thermogravimetric (TG) and differential thermal analysis (DTA).

Graphical abstract: Two new bismuth thiourea bromides: crystal structure, growth, and characterization

Supplementary files

Article information

Article type
Paper
Submitted
19 Oct 2013
Accepted
19 Nov 2013
First published
21 Nov 2013

Dalton Trans., 2014,43, 2577-2580

Two new bismuth thiourea bromides: crystal structure, growth, and characterization

M. Li and R. K. Li, Dalton Trans., 2014, 43, 2577 DOI: 10.1039/C3DT52953C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements