Issue 40, 2009

A novel route to rhodaboratranes [Rh(CO)(PR3){B(taz)3}]+via the redoxactivation of scorpionate complexes [RhLL′Tt]

Abstract

The reaction of a mixture of the sodium salts of dihydrobis(4-ethyl-3-methyl-5-thioxo-1,2,4-triazolyl)borate, NaBt, and hydrotris(4-ethyl-3-methyl-5-thioxo-1,2,4-triazolyl)borate, NaTt, with [{Rh(cod)(μ-Cl)}2] gave [Rh(cod)Bt] and [Rh(cod)Tt], which separately react with CO gas to give the unstable dicarbonyl [Rh(CO)2Bt] and an equilibrium mixture of two isomers of [Rh(CO)2Tt] and [(RhTt)2(μ-CO)3], respectively. Tertiary phosphorus donor ligands react with the mixture of [Rh(CO)2Tt] and [(RhTt)2(μ-CO)3] to give [Rh(CO)(PR3)Tt] (R = Cy, NMe2, Ph or OPh) and [Rh{P(OPh)3}2Tt] in which rhodium is bound to two sulfur atoms of the scorpionate ligand; the B–H bond is directed towards the metal to give an agostic-like B–H⋯Rh interaction. Dinuclear [(RhTt)2(μ-CO)3] has κ3[S3]-bound Tt ligands with a rhodiumrhodium bond bridged by three carbonyls. In solution the mononuclear Tt complexes undergo rapid dynamic interchange of the three thioxotriazolyl rings, probably viaκ3[S3]-coordinated intermediates. The monocarbonyls [Rh(CO)(PR3)Tt] (R = Cy, NMe2 or Ph) react with two equivalents of [Fe(η-C5H5)2][PF6] in the presence of triethylamine to give the monocationic rhodaboratranes [Rh(CO)(PR3){B(taz)3}]+, with boron NMR spectroscopy providing evidence for the boronrhodium bond. In the solid state, rhodium is bound to the three sulfur atoms and the boron of the B(taz)3 fragment, forming a tricyclo[3.3.3.0] cage. The phosphine is trans to the Rh–B bond, the long Rh–P bond indicating a pronounced trans influence for the coordinated boron. The cation [Rh(CO)(PPh3){B(taz)3}]+ reacts with [NBun4]I to give [Rh(PPh3)I{B(taz)3}], in which the halide is trans to the Rh–B bond, and a second species, possibly [Rh(CO)I{B(taz)3}]. The dirhodaboratrane [Rh2(PCy3){B(taz)3}2][PF6]2, a minor byproduct in the synthesis of [Rh(CO)(PCy3){B(taz)3}][PF6], has a distorted square pyramidal rhodium atom with a vacant site trans to the Rh–B bond. The second metal has four coordination sites filled by the sulfur and boron atoms of a second B(taz)3 unit, the remaining octahedral sites occupied by two of the sulfur atoms of the first B(taz)3 unit which therefore bridges the two rhodium atoms.

Graphical abstract: A novel route to rhodaboratranes [Rh(CO)(PR3){B(taz)3}]+via the redox activation of scorpionate complexes [RhLL′Tt]

Supplementary files

Article information

Article type
Paper
Submitted
22 May 2009
Accepted
03 Aug 2009
First published
28 Aug 2009

Dalton Trans., 2009, 8724-8736

A novel route to rhodaboratranes [Rh(CO)(PR3){B(taz)3}]+via the redox activation of scorpionate complexes [RhLL′Tt]

R. J. Blagg, C. J. Adams, J. P. H. Charmant, N. G. Connelly, M. F. Haddow, A. Hamilton, J. Knight, A. G. Orpen and B. M. Ridgway, Dalton Trans., 2009, 8724 DOI: 10.1039/B910108J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements