Issue 25, 2006

Active site structures and the redox properties of blue copper proteins: atomic resolution structure of azurin II and electronic structure calculations of azurin, plastocyanin and stellacyanin

Abstract

Understanding how the active site structures of blue copper proteins determine their redox properties is the central structure–function relationship question of this important class of protein, also referred to as cupredoxins. We here describe both experimental and computational studies of azurin, plastocyanin and stellacyanin designed to define more accurately the geometric structures of the active site of the reduced and oxidized species, and thus to understand how these structures determine the redox potentials of these proteins. To this end the crystal structure of reduced azurin II has been determined at an atomic resolution of 1.13 Å and is presented here. Co-ordinates and structure factors have been deposited in the RCSB Protein Data Bank with accession codes 2ccw and r2ccwsf respectively. The improved accuracy provided by the atomic resolution for the metal stereochemistry are utilised in conjunction with the EXAFS data for theoretical calculations. Multilevel calculations involving density functional theory and molecular mechanical potentials are used to predict both the geometric and electronic structure of the active sites of azurin, plastocyanin and stellacyanin and to estimate the relative redox potentials of these three proteins. We have also compared the relative energies of the structures obtained from experiment at varying resolutions, and from the isolated and embedded cluster calculations. We find significant energy differences between low and high (atomic) resolution structures arising primarily due to inaccuracies in the Cu–ligand distances in the lower resolution structures, emphasising the importance of accurate, very high resolution structural information. QM/MM structures are only ∼1 kcal mol−1 lower in energy than the 1.13 Å structure while the optimized gas phase structure is 13.0 kcal mol−1 lower in energy.

Graphical abstract: Active site structures and the redox properties of blue copper proteins: atomic resolution structure of azurin II and electronic structure calculations of azurin, plastocyanin and stellacyanin

Article information

Article type
Paper
Submitted
30 Sep 2005
Accepted
31 Jan 2006
First published
23 Feb 2006

Dalton Trans., 2006, 3067-3076

Active site structures and the redox properties of blue copper proteins: atomic resolution structure of azurin II and electronic structure calculations of azurin, plastocyanin and stellacyanin

K. Paraskevopoulos, M. Sundararajan, R. Surendran, M. A. Hough, R. R. Eady, I. H. Hillier and S. S. Hasnain, Dalton Trans., 2006, 3067 DOI: 10.1039/B513942B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements