Issue 1, 2004

Synthesis and properties of new ditertiary stibines based upon o-, m- or p-xylyl and m- or p-phenylene backbones and their complexes with tungsten, iron and nickel carbonyls

Abstract

High yield syntheses for 1,2-, 1,3-, and 1,4-xylyl distibines (1,2-C6H4(CH2SbMe2)2, 1,3-C6H4(CH2SbMe2)2, 1,4-C6H4(CH2SbMe2)2, respectively) from Me2SbCl (conveniently made in situ from Me2PhSb and HClgas) and the appropriate di-Grignard are reported. The 1,3- and 1,4-phenylene distibines, 1,3-C6H4(SbMe2)2 and 1,4-C6H4(SbMe2)2, were made similarly. The new ligands have been characterised by mass spectrometry, 1H and 13C{1H} NMR spectroscopy, and by the preparation of methiodide derivatives. The crystal structures of 1,4-C6H4(CH2SbMe2)2 and [1,3-C6H4(CH2SbMe3)2]I2 have been determined. The synthesis of 1,2-C6H4(CH2SbPh2)2 has been achieved similarly in modest yield and the distibine converted into the tetra-iodo-derivative 1,2-C6H4(CH2SbPh2I2)2. The coordination modes available to these ligands have been probed by the synthesis and characterisation of complexes with nickel, iron and tungsten carbonyls. The crystal structure of [{Fe(CO)4}2{μ-1,3-C6H4(CH2SbMe2)2}] has been determined. The spectroscopic properties of these carbonyl derivatives have been compared with those of complexes of other antimony ligands, and in some cases with diphosphine and diarsine complexes, to probe the electronic properties of the new ligands.

Graphical abstract: Synthesis and properties of new ditertiary stibines based upon o-, m- or p-xylyl and m- or p-phenylene backbones and their complexes with tungsten, iron and nickel carbonyls

Article information

Article type
Paper
Submitted
29 Sep 2003
Accepted
06 Nov 2003
First published
28 Nov 2003

Dalton Trans., 2004, 51-58

Synthesis and properties of new ditertiary stibines based upon o-, m- or p-xylyl and m- or p-phenylene backbones and their complexes with tungsten, iron and nickel carbonyls

W. Levason, M. L. Matthews, G. Reid and M. Webster, Dalton Trans., 2004, 51 DOI: 10.1039/B312083J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements