Issue 12, 2002

Towards co-operative reactivity in conjoint classical-organometallic heterometallic complexes: the co-ordination chemistry of novel ligands with triphenylphosphine and bis(pyridylethyl)amine or triazacyclononane domains

Abstract

With a view towards later studies of co-operativity in heteronuclear complexes with hard classical (oxygen-activating) and soft organometallic (organic-substrate binding) metal centres, four novel ditopic N3P-donor ligands (L1–L4), each comprising triphenylphosphine tethered to an N,N′-bis(2-pyridyl-2-ethyl)amine (bpea) or a 1,4-diisopropyl-1,4,7-triazacyclononane (tacn*) N3-donor group, have been designed and prepared by reductive aminations of ortho- and meta-(diphenylphosphino)benzaldehydes with bpea (for L1 and L3) and tacn* (for L2 and L4). A range of κNnP-chelate mononuclear complexes have been isolated from the reactions of the ortho-substituted ligands, L1 and L2, with Cu(I), Zn(II) and Pt(II) sources, and the X-ray crystal structures of [Cu(L1)][PF6], [Cu(L2)][PF6] (communicated in: S. E. Watkins, D. C. Craig and S. B. Colbran, J. Chem. Soc., Dalton Trans., 1999, 1539) and [PtCl(L1)][PF6] have been determined. Six complexes with the phosphine of L1–L4 co-ordinated to a softer [Pt(II), Ir(I) or W(0)] metal centre and with dangling, metal-free N3-donor domains have been prepared: for the ortho-substituted ligands L1 and L2, it was necessary to protect the hard, more basic N3-donor domains by protonation (pH control) to prevent formation of κNnP-chelate mononuclear complexes; for the meta-substituted ligands L3 and L4, pH control was unnecessary as the phosphine group selectively binds to the softer metal ions. The complex trans-[IrCl(CO)(L3)2] reversibly forms a dioxygen adduct. An Ir(III)Cu(II)2 and four Pt(II)Cu(II)2 heterometallic complexes were prepared by adding hard Cu(II) ions to the Ir(I) and Pt(II) complexes with metal-free N3-donor domains, and the full characterisation of these is described. The tungsten(0) carbonyl complex [W(CO)5(L3)], with a metal-free N3-bpea domain, was prepared for a study of metal ion recognition. No perturbation of the carbonyl region of the IR spectrum was observed when metal ions were added. The effect of submolar quantities of heterometallic complexes, obtained by adding a first d-series metal(II) ion (2 equivalents) to [IrCl(CO)(L3)2], on the oxidation of styrene by oxygen in methylethyl ketone has been assayed: inhibition of the oxidation is observed with the %conversion and the product selectivity dependant on the metal(II) ion.

Graphical abstract: Towards co-operative reactivity in conjoint classical-organometallic heterometallic complexes: the co-ordination chemistry of novel ligands with triphenylphosphine and bis(pyridylethyl)amine or triazacyclononane domains

Supplementary files

Article information

Article type
Paper
Submitted
15 Feb 2002
Accepted
15 Apr 2002
First published
15 May 2002

J. Chem. Soc., Dalton Trans., 2002, 2423-2436

Towards co-operative reactivity in conjoint classical-organometallic heterometallic complexes: the co-ordination chemistry of novel ligands with triphenylphosphine and bis(pyridylethyl)amine or triazacyclononane domains

S. E. Watkins, D. C. Craig and S. B. Colbran, J. Chem. Soc., Dalton Trans., 2002, 2423 DOI: 10.1039/B201720M

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements