Issue 14, 1998

Structure of diiodine adducts of some di- and tri-tertiaryphosphines in the solid state and in solution

Abstract

A series of ditertiaryphosphine–tetraiodine adducts R2P(I2)(CH2)nP(I2)R2 (R = Ph, n = 1–4; R = PhCH2 or o-CH3C6H4, n = 2) and two tritertiaryphosphine–hexaiodine adducts, PhP(CH2CH2PPh2)2I6 and CH3C(CH2PPh2)3I6 have been prepared and characterised by 31P-{H} solution NMR and Raman spectroscopy. In the case of Ph2P(I2)(CH2)nP(I2)Ph2 (n = 2 or 4), 31P-{H} NMR magic angle spinning NMR spectroscopy has been used to investigate the nature of the compounds in the solid state. In agreement with our previous extensive studies on the monophosphine derivatives, R3PI2, the tetraiododiphosphine compounds Ph2P(I2)(CH2)nP(I2)Ph2 (n = 2 or 4) isolated from diethyl ether contain molecular four-co-ordinate phosphorus centres onto which the diiodine is bound as a linear spoke, as indicated by their 31P-{H} NMR shifts obtained in CDCl3 solution. Again, in agreement with our previous solution studies of the monophosphine derivatives R3PI2, the diphosphine–tetraiodine adducts completely ionise in CDCl3 solution to produce the ionic compounds [R2P(I)(CH2)nP(I)R2]2I; the solution 31P-{H} NMR shifts are very similar to analogous solution shifts previously assigned to [R3PI]I. The Raman band assignable to ν(P–I) has been identified for the compounds and a further band at lower frequency has been observed and assigned to ν(I–I). Although the solid-state NMR spectra of the triphosphine–hexaiodine adducts were not recorded, a band assignable to ν(I–I) was observed in the Raman spectrum, suggesting the molecular four-co-ordinate spoke structure also prevails for these hexaiodotritertiaryphosphine compounds in the solid state. From solution 31P-{H} NMR shifts these adducts also appear to ionise in CDCl3 solution.

Article information

Article type
Paper

J. Chem. Soc., Dalton Trans., 1998, 2379-2382

Structure of diiodine adducts of some di- and tri-tertiaryphosphines in the solid state and in solution

N. Bricklebank, S. M. Godfrey, C. A. McAuliffe, P. Deplano, M. L. Mercuri and J. M. Sheffield, J. Chem. Soc., Dalton Trans., 1998, 2379 DOI: 10.1039/A706277J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements