Issue 10, 2019

Novozym 435: the “perfect” lipase immobilized biocatalyst?

Abstract

Novozym 435 (N435) is a commercially available immobilized lipase produced by Novozymes. It is based on immobilization via interfacial activation of lipase B from Candida antarctica on a resin, Lewatit VP OC 1600. This resin is a macroporous support formed by poly(methyl methacrylate) crosslinked with divinylbenzene. N435 is perhaps the most widely used commercial biocatalyst in both academy and industry. Here, we review some of the success stories of N435 (in chemistry, energy and lipid manipulation), but we focus on some of the problems that the use of this biocatalyst may generate. Some of these problems are just based on the mechanism of immobilization (interfacial activation) that may facilitate enzyme desorption under certain conditions. Other problems are specific to the support: mechanical fragility, moderate hydrophilicity that permits the accumulation of hydrophilic compounds (e.g., water or glycerin) and the most critical one, support dissolution in some organic media. Finally, some solutions (N435 coating with silicone, enzyme physical or chemical crosslinking, and use of alternative supports) are proposed. However, the N435 history, even with these problems, may continue in the coming future due to its very good properties if some simpler alternative biocatalysts are not developed.

Graphical abstract: Novozym 435: the “perfect” lipase immobilized biocatalyst?

Article information

Article type
Minireview
Submitted
01 Mar 2019
Accepted
12 Apr 2019
First published
12 Apr 2019
This article is Open Access
Creative Commons BY-NC license

Catal. Sci. Technol., 2019,9, 2380-2420

Novozym 435: the “perfect” lipase immobilized biocatalyst?

C. Ortiz, M. L. Ferreira, O. Barbosa, J. C. S. dos Santos, R. C. Rodrigues, Á. Berenguer-Murcia, L. E. Briand and R. Fernandez-Lafuente, Catal. Sci. Technol., 2019, 9, 2380 DOI: 10.1039/C9CY00415G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements