Jump to main content
Jump to site search

Issue 16, 2018
Previous Article Next Article

Synergistic amplification of catalytic hydrogen generation by a thin-film conducting polymer composite

Author affiliations

Abstract

This work reports a composite of poly(3,4-ethylenedioxythiophene) (PEDOT) that is notably more catalytically active for hydrogen generation than the industry-standard benchmark catalyst, Pt, under the same conditions. A PEDOT thin-film containing nanoparticulate Ni (nano-Ni) and reduced graphene oxide (rGO) in the specific molar ratio of 5.6 (C; PEDOT) : 1 (Ni) : 5.2 (C; other), (photo)catalytically generated H2 at 3.6 mA cm−2 (including ca. 0.2 mA cm−2 due to the light illumination) after 3 h at −0.75 V (vs. Ag/AgCl) in 0.05 M H2SO4/0.2 M Na2SO4 under 0.25 sun. A control nano-Ni/rGO film containing the same quantities of nano-Ni and rGO but without any PEDOT, yielded 2.1 mA cm−2, indicating that the PEDOT synergistically amplified the above result by 71%. Other ratios of the above PEDOT composite produced notably lower activities. Control PEDOT, PEDOT/nano-Ni, and PEDOT/rGO films were an order of magnitude less catalytically active. A control bare Pt electrode produced only 2.2 mA cm−2 under the same conditions. Studies suggested the origin of the synergistic amplification to involve the PEDOT electrically connecting the largest number of active sites by the shortest, most efficient pathways for hole transport. These results confirm the proposition that thin-film conducting polymers involving very specific, optimum ratios of catalyst density to thickness may synergistically amplify catalysis.

Graphical abstract: Synergistic amplification of catalytic hydrogen generation by a thin-film conducting polymer composite

Back to tab navigation

Supplementary files

Article information


Submitted
18 Apr 2018
Accepted
18 Jul 2018
First published
19 Jul 2018

Catal. Sci. Technol., 2018,8, 4169-4179
Article type
Paper
Author version available

Synergistic amplification of catalytic hydrogen generation by a thin-film conducting polymer composite

M. Alsultan, J. Choi, R. Jalili, P. Wagner and G. F. Swiegers, Catal. Sci. Technol., 2018, 8, 4169
DOI: 10.1039/C8CY00780B

Social activity

Search articles by author

Spotlight

Advertisements