Issue 17, 2018

Supported gold–nickel nano-alloy as a highly efficient catalyst in levulinic acid hydrogenation with formic acid as an internal hydrogen source

Abstract

Gamma-valerolactone (GVL) is one of the key products of future biorefineries. We show here for the first time the superior activity of Ni-based, Au doped catalysts in levulinic acid hydrogenation towards GVL using formic acid as a hydrogen source. Their performances are strongly influenced by the preparation method, and the highest GVL yield is achieved for bimetallic Au–Ni catalysts prepared via co-impregnation of both metallic salts with a reductive thermal treatment under hydrogen. The very high catalytic activity is explained by the use of DFT calculations and the extensive characterization of the catalyst surface and bulk properties. We highlight the pivotal role played by the incorporated isolated metallic Ni atoms within Au nanoparticles. The nano-alloy composition is determined. It allows establishment of a surface model of such an alloy, thanks to which the high activity can be explained by the presence of an optimum energetic span of FA adsorption. The existence of strong interaction between Au and Ni in a surface alloy, Au–Ni, favors selective and fast decomposition of formic acid into hydrogen that consequently facilitates strongly the combined hydrogenation process.

Graphical abstract: Supported gold–nickel nano-alloy as a highly efficient catalyst in levulinic acid hydrogenation with formic acid as an internal hydrogen source

Supplementary files

Article information

Article type
Paper
Submitted
05 Mar 2018
Accepted
15 Jun 2018
First published
18 Jun 2018

Catal. Sci. Technol., 2018,8, 4318-4331

Supported gold–nickel nano-alloy as a highly efficient catalyst in levulinic acid hydrogenation with formic acid as an internal hydrogen source

A. M. Ruppert, M. Jędrzejczyk, N. Potrzebowska, K. Kaźmierczak, M. Brzezińska, O. Sneka-Płatek, P. Sautet, N. Keller, C. Michel and J. Grams, Catal. Sci. Technol., 2018, 8, 4318 DOI: 10.1039/C8CY00462E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements