Issue 13, 2016

Towards rational design of core–shell catalytic nanoreactor with high performance catalytic hydrogenation of levulinic acid

Abstract

We have described herein the synthesis and characterization of a uniquely designed mesoporous silica shell@Pd nanoparticle tethered amine functionalized silica core catalyst and its catalytic properties in the hydrogenation of levulinic acid, a key platform molecule in many biorefinery schemes, into γ-valerolactone, using formic acid as a sustainable H2 source. Monodispersed silica core particles (∼300 nm in diameter) were prepared and further functionalized by amine groups and then the in situ loading of Pd nanoparticles was carried out. Pd0-NPs are sandwiched between the nonporous silica core and the mesoporous silica shell, leading to the exceptional stability of the catalyst. The nanostructured material was thoroughly characterised by means of powder XRD patterns, N2 sorption, FE-SEM, UHR-TEM, TG-DTA, and XPS analysis. Our core–shell nanostructure catalyst encapsulated with Pd nanoparticles exhibited a significant increase in catalytic activity and excellent selectivity towards γ-valerolactone (99%) compared with control catalysts for levulinic acid hydrogenation, including Pd@C and Pd@SiO2 (without a mesoporous SiO2 shell). Our results suggest that the core–shell silica based nanocatalyst offers tremendous recyclability (up to the 10th catalytic run with consistent conversion and selectivity of γ-valerolactone), stability (no leaching of Pd and structure collapsing) and no sign of deactivation.

Graphical abstract: Towards rational design of core–shell catalytic nanoreactor with high performance catalytic hydrogenation of levulinic acid

Supplementary files

Article information

Article type
Paper
Submitted
23 Jan 2016
Accepted
03 Mar 2016
First published
03 Mar 2016

Catal. Sci. Technol., 2016,6, 5102-5115

Towards rational design of core–shell catalytic nanoreactor with high performance catalytic hydrogenation of levulinic acid

B. Banerjee, R. Singuru, S. K. Kundu, K. Dhanalaxmi, L. Bai, Y. Zhao, B. M. Reddy, A. Bhaumik and J. Mondal, Catal. Sci. Technol., 2016, 6, 5102 DOI: 10.1039/C6CY00169F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements