Issue 8, 2013

Mathematical modeling of intercalation batteries at the cell level and beyond

Abstract

Mathematical modeling of lithium ion batteries is a key feature for a profound understanding of the whole spectrum of phenomena occurring in such electrochemical systems. Due to their inherent multi-scale nature, batteries cannot be described with a single equation. It is necessary to couple the physical chemistry, reaction kinetics, ion flow, heat generation, et cetera, appropriately to obtain a coupled set of equations (a model) which has predictive efficiency. To adapt ideas and expertise obtained in the field of modeling to future type of batteries, new electrode or electrolyte materials or to improve the model reliability, a universal basis is desirable. In this sense, we carefully derive the commonly used set of equations based on the most general form of linear non-equilibrium thermodynamics. Due to chemical and physical assumptions the set of equations is reduced to facilitate numerical computations. Transport equations for a general electrolyte are derived and different electroneutrality assumptions are applied to obtain Poisson–Nernst–Planck-type equations or a generalized Ohmic law. Electrodes are described with single and many particle models, e.g. for phase separating materials, and the transition to porous electrode theory is given. A mathematical treatment of the intercalation reaction is finally presented, based on surface charge densities and electrode potentials.

Graphical abstract: Mathematical modeling of intercalation batteries at the cell level and beyond

Article information

Article type
Tutorial Review
Submitted
22 Feb 2012
First published
25 Jan 2013

Chem. Soc. Rev., 2013,42, 3234-3252

Mathematical modeling of intercalation batteries at the cell level and beyond

M. Landstorfer and T. Jacob, Chem. Soc. Rev., 2013, 42, 3234 DOI: 10.1039/C2CS35050E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements