Issue 23, 2012

Defect-related luminescent materials: synthesis, emission properties and applications

Abstract

Luminescent materials have found a wide variety of applications, including information displays, lighting, X-ray intensification and scintillation, and so on. Therefore, much effort has been devoted to exploring novel luminescent materials so far. In the past decade, defect-related luminescent materials have inspired intensive research efforts in their own right. This kind of luminescent material can be basically classified into silica-based materials, phosphate systems, metal oxides, BCNO phosphors, and carbon-based materials. These materials combine several favourable attributes of traditional commercially available phosphors, which are stable, efficient, and less toxic, being free of the burdens of intrinsic toxicity or elemental scarcity and the need for stringent, intricate, tedious, costly, or inefficient preparation steps. Defect-related luminescent materials can be produced inexpensively and on a large scale by many approaches, such as sol–gel process, hydro(solvo)thermal reaction, hydrolysis methods, and electrochemical methods. This review article highlights the recent advances in the chemical synthesis and luminescent properties of the defect-related materials, together with their control and tuning, and emission mechanisms (solid state physics). We also speculate on their future and discuss potential developments for their applications in lighting and biomedical fields.

Graphical abstract: Defect-related luminescent materials: synthesis, emission properties and applications

Article information

Article type
Critical Review
Submitted
25 Mar 2012
First published
27 Sep 2012

Chem. Soc. Rev., 2012,41, 7938-7961

Defect-related luminescent materials: synthesis, emission properties and applications

C. Zhang and J. Lin, Chem. Soc. Rev., 2012, 41, 7938 DOI: 10.1039/C2CS35215J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements