Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.

Issue 17, 2012
Previous Article Next Article

Electrochemical properties of CdSe and CdTe quantum dots

Author affiliations


Semiconductor nanocrystal quantum dots (QDs), owing to their unique opto-electronic properties determined by quantum confinement effects, have been the subject of extensive investigations in different areas of science and technology in the past two decades. The electrochemical behaviour of QDs, particularly for CdSe and CdTe nanocrystals, has also been explored, although to a lesser extent compared to the optical properties. Voltammetric measurements can be used to probe the redox levels available for the nanocrystals, which is an invaluable piece of information if these systems are involved in electron transfer processes. Electrochemical data can also foster the interpretation of the spectroscopic properties of QDs, and give insightful information on their chemical composition, dimension, and surface properties. Hence, electrochemical methods constitute in principle an effective tool to probe the quality of QD samples in terms of purity, size dispersion, and surface defects. The scope of this critical review is to discuss the results of electrochemical studies carried out on CdSe and CdTe core and core–shell semiconductor nanocrystals of spherical shape. Examples of emerging or potential applications that exploit electroactive quantum dot-based systems will also be illustrated.

Graphical abstract: Electrochemical properties of CdSe and CdTe quantum dots

Back to tab navigation

Article information

03 Apr 2012
First published
04 Jul 2012

Chem. Soc. Rev., 2012,41, 5728-5743
Article type
Critical Review

Electrochemical properties of CdSe and CdTe quantum dots

M. Amelia, C. Lincheneau, S. Silvi and A. Credi, Chem. Soc. Rev., 2012, 41, 5728
DOI: 10.1039/C2CS35117J

Social activity

Search articles by author