Issue 27, 2021

Ion association in hydrothermal aqueous NaCl solutions: implications for the microscopic structure of supercritical water

Abstract

Knowledge of the microscopic structure of fluids and changes thereof with pressure and temperature is important for the understanding of chemistry and geochemical processes. In this work we investigate the influence of sodium chloride on the hydrogen-bond network in aqueous solution up to supercritical conditions. A combination of in situ X-ray Raman scattering and ab initio molecular dynamics simulations is used to probe the oxygen K-edge of the alkali halide aqueous solution in order to obtain unique information about the oxygen's local coordination around the ions, e.g. solvation-shell structure and the influence of ion pairing. The measured spectra exhibit systematic temperature dependent changes, which are entirely reproduced by calculations on the basis of structural snapshots obtained via ab initio molecular dynamics simulations. Analysis of the simulated trajectories allowed us to extract detailed structural information. This combined analysis reveals a net destabilizing effect of the dissolved ions which is reduced with rising temperature. The observed increased formation of contact ion pairs and occurrence of larger polyatomic clusters at higher temperatures can be identified as a driving force behind the increasing structural similarity between the salt solution and pure water at elevated temperatures and pressures with drawback on the role of hydrogen bonding in the hot fluid. We discuss our findings in view of recent results on hot NaOH and HCl aqueous fluids and emphasize the importance of ion pairing in the interpretation of the microscopic structure of water.

Graphical abstract: Ion association in hydrothermal aqueous NaCl solutions: implications for the microscopic structure of supercritical water

Article information

Article type
Paper
Submitted
08 Apr 2021
Accepted
10 Jun 2021
First published
22 Jun 2021
This article is Open Access
Creative Commons BY license

Phys. Chem. Chem. Phys., 2021,23, 14845-14856

Ion association in hydrothermal aqueous NaCl solutions: implications for the microscopic structure of supercritical water

M. Elbers, C. Schmidt, C. Sternemann, C. J. Sahle, S. Jahn, C. Albers, R. Sakrowski, H. Gretarsson, M. Sundermann, M. Tolan and M. Wilke, Phys. Chem. Chem. Phys., 2021, 23, 14845 DOI: 10.1039/D1CP01490K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements