Issue 20, 2021

Benchmarking London dispersion corrected density functional theory for noncovalent ion–π interactions

Abstract

The strongly attractive noncovalent interactions of charged atoms or molecules with π-systems are important binding motifs in many chemical and biological systems. These so-called ion–π interactions play a major role in enzymes, molecular recognition, and for the structure of proteins. In this work, a molecular test set termed IONPI19 is compiled for inter- and intramolecular ion–π interactions, which is well balanced between anionic and cationic systems. The IONPI19 set includes interaction energies of significantly larger molecules (up to 133 atoms) than in other ion–π test sets and covers a broad range of binding motifs. Accurate (local) coupled cluster values are provided as reference. Overall, 19 density functional approximations, including seven (meta-)GGAs, eight hybrid functionals, and four double-hybrid functionals combined with three different London dispersion corrections, are benchmarked for interaction energies. DFT results are further compared to wave function based methods such as MP2 and dispersion corrected Hartree–Fock. Also, the performance of semiempirical QM methods such as the GFNn-xTB and PMx family of methods is tested. It is shown that dispersion-uncorrected DFT underestimates ion–π interactions significantly, even though electrostatic interactions dominate the overall binding. Accordingly, the new charge dependent D4 dispersion model is found to be consistently better than the standard D3 correction. Furthermore, the functional performance trend along Jacob's ladder is generally obeyed and the reduction of the self-interaction error leads to an improvement of (double) hybrid functionals over (meta-)GGAs, even though the effect of the SIE is smaller than expected. Overall, the double-hybrids PWPB95-D4/QZ and revDSD-PBEP86-D4/QZ turned out to be the most reliable among all assessed methods for the description of ion–π interactions, which opens up new perspectives for systems where coupled cluster calculations are no longer computationally feasible.

Graphical abstract: Benchmarking London dispersion corrected density functional theory for noncovalent ion–π interactions

Supplementary files

Article information

Article type
Paper
Submitted
26 Mar 2021
Accepted
05 May 2021
First published
05 May 2021

Phys. Chem. Chem. Phys., 2021,23, 11635-11648

Benchmarking London dispersion corrected density functional theory for noncovalent ion–π interactions

S. Spicher, E. Caldeweyher, A. Hansen and S. Grimme, Phys. Chem. Chem. Phys., 2021, 23, 11635 DOI: 10.1039/D1CP01333E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements