Jump to main content
Jump to site search

Issue 3, 2021
Previous Article Next Article

A DFT-based microkinetic study on methanol synthesis from CO2 hydrogenation over the In2O3 catalyst

Author affiliations

Abstract

In this work, we performed density functional theory (DFT)-based microkinetic simulations to elucidate the reaction mechanism of methanol synthesis on two of the most stable facets of the cubic In2O3 (c-In2O3) catalyst, namely the (111) and (110) surfaces. Our DFT calculations show that for both surfaces, it is difficult for the H atom adsorbed at the remaining surface O atom around the O vacancy (Ov) active site to migrate to an O adsorbed at the Ov due to the very high energy barrier involved. In addition, we also find that the C–O bond in the bt-CO2* chemisorption structure can directly break to form CO with a lower energy barrier than that in its hydrogenation to the COOH* intermediate in the COOH route. However, our microkinetic simulations suggest that for both surfaces, CO2 deoxygenation to form CO in both pathways, namely the COOH and CO–O routes, are kinetically slower than methanol formation under typical steady state conditions assuming a CO2 conversion of 10% and a CO selectivity of 1%. Although these results agree with previous experimental observations at relatively low reaction temperature, where methanol formation dominates, they cannot explain the predominant formation of CO at relatively high reaction temperature. We tentatively attribute this to the simplicity of our microkinetic model as well as possible structural changes of the catalyst at relatively high reaction temperature. Furthermore, although the rate-determining step (RDS) from the degree of rate control (DRC) analysis is usually consistent with that judged from the DFT calculated energy barriers, for CO2 hydrogenation to methanol over the (111) surface, our DRC analysis suggests homolytic H2 dissociation to be the rate-controlling step, which is not apparent from the DFT-calculated energy barriers. This indicates that CO2 conversion and methanol selectivity over the (111) surface can be further enhanced if homolytic H2 dissociation can be accelerated for instance by introducing transition metal dopants as already shown by some experimental observations.

Graphical abstract: A DFT-based microkinetic study on methanol synthesis from CO2 hydrogenation over the In2O3 catalyst

Back to tab navigation

Supplementary files

Article information


Submitted
16 Nov 2020
Accepted
23 Dec 2020
First published
23 Dec 2020

Phys. Chem. Chem. Phys., 2021,23, 1888-1895
Article type
Paper

A DFT-based microkinetic study on methanol synthesis from CO2 hydrogenation over the In2O3 catalyst

Z. Zhou, B. Qin, S. Li and Y. Sun, Phys. Chem. Chem. Phys., 2021, 23, 1888 DOI: 10.1039/D0CP05947A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements