Issue 33, 2020

Transient species of esculetin produced in pulse radiolysis: experimental and quantum chemical investigations

Abstract

Radiation chemical studies of esculetin (E), a dihydroxycoumarin derivative, were performed using a pulse radiolysis technique employing kinetic spectrometer and quantum chemical calculations. Both the oxidizing radicals, hydroxyl (˙OH) and azide (N3˙) radicals, and the reducing radical hydrated electron (eaq) and hydrogen atom (H˙) reactions of E were used for the present study. The reaction of ˙OH and N3˙ radicals with E produced transients that absorbed at 410 nm; additionally, another broad band at 510 nm was observed for the ˙OH radical reaction. The reaction of ˙OH radicals with E formed the phenoxyl radical and ˙OH-adducts. It was revealed that 32% of the ˙OH radical reaction products of E were oxidizing in nature and 47% were reducing in nature. The carbonyl group of E was reduced by eaq and subsequently converted to a neutral radical adduct upon protonation. Similarly, the H˙ atom reaction with E yielded a neutral adduct along with H˙ atom addition products. The transient product absorbed at 380 nm when E was reduced by eaq and the H˙ atom; additionally, the H˙ atom addition product absorbed at 500 nm. In the case of E, the oxidizing radicals were reactive towards the aromatic ring and the phenolic OH group, whereas the reducing radicals were reactive towards the carbonyl group of E. Quantum chemical calculations using DFT and TD-DFT methods have supported the experimental observation. There was good agreement between the experimental and theoretical data on a number of occasions. Based on the energetics of the transients, it was suggested that the addition products were exothermic in nature. In the addition reaction with the ˙OH radical, there was a slight increase in the C–C bond length adjacent to the addition site compared to the remaining bonds. During the reduction process through the carbonyl group, the [double bond splayed left]C[double bond, length as m-dash]O bond length was increased from 1.221 Å to 1.358 Å. There was an excellent correlation between the calculated and experimentally observed absorption maximum for the oxidized product of E. Overall, these redox studies may find application in developing hydroxycoumarin derivatives as an antioxidant or as an electron transporting agent in biochemical processes. In addition, this information will be helpful for understanding the mechanism of removing pollutant dyes by advanced oxidation processes.

Graphical abstract: Transient species of esculetin produced in pulse radiolysis: experimental and quantum chemical investigations

Supplementary files

Article information

Article type
Paper
Submitted
11 Jun 2020
Accepted
23 Jul 2020
First published
23 Jul 2020

Phys. Chem. Chem. Phys., 2020,22, 18573-18584

Transient species of esculetin produced in pulse radiolysis: experimental and quantum chemical investigations

R. G. Deokar and A. Barik, Phys. Chem. Chem. Phys., 2020, 22, 18573 DOI: 10.1039/D0CP03130E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements