Jump to main content
Jump to site search

Issue 32, 2020
Previous Article Next Article

Changing the magnetic states of an Fe/BaTiO3 interface through crystal field effects controlled by strain

Author affiliations

Abstract

The search for better and inexpensive magnetoelectric materials is now commonplace in solid state physics. Intense coupling between technologically viable electric and magnetic properties, embedded in a single material, is still an attribute greatly pursued by the scientific community. Following this line of thought, using DFT, the study of a specific interface between the TiO2 layer of BaTiO3 and a monolayer of Fe atoms is presented, probing different uni-axial strain effects of the considered supercell. Depending on the strain, several different metastable magnetic states are predicted: a perfectly balanced antiferromagnetic state, an unbalanced ferrimagnetic state, a ferromagnetic state, and a non-magnetic state where each atom has its total magnetic moment quenched. Since these multiple magnetic states can be reversibly controlled by strain, under optimized conditions, this interface can switch from the ferromagnetic state (μ ≈ 2.2 μB per Featom) to the non-magnetic state (μ = 0 μB per Featom), enabling enticing prospects for technological applications.

Graphical abstract: Changing the magnetic states of an Fe/BaTiO3 interface through crystal field effects controlled by strain

Back to tab navigation

Supplementary files

Article information


Submitted
26 Feb 2020
Accepted
06 Jul 2020
First published
17 Jul 2020

Phys. Chem. Chem. Phys., 2020,22, 18050-18059
Article type
Paper

Changing the magnetic states of an Fe/BaTiO3 interface through crystal field effects controlled by strain

C. O. Amorim, J. N. Gonçalves, J. S. Amaral and V. S. Amaral, Phys. Chem. Chem. Phys., 2020, 22, 18050
DOI: 10.1039/D0CP01087A

Social activity

Search articles by author

Spotlight

Advertisements