Jump to main content
Jump to site search

Issue 10, 2020
Previous Article Next Article

Taming quantum interference in single molecule junctions: induction and resonance are key

Author affiliations

Abstract

We have joined two fundamental concepts of organic chemistry to provide a deep, yet intuitive, understanding of how side groups influence destructive quantum interference (DQI) in the transport through conjugated molecules. Using density functional theory combined with Green's function techniques, and employing tight-binding models in which all the π-systems are considered, we elucidate the separate roles of bond-resonance and induction in tuning DQI. We show that the position of the anti-resonances produced by DQI is sensitive to the number of side groups, but not in a simple additive way. Instead, addition of multiple groups results in a weaker overall contribution per group, and this can be understood using a straight forward graphical analysis. Furthermore, we show that additional fine tuning of DQI is possible via attachment of a chain of atoms to a second site around the ring. DQI is controlled by modifying the length of the chain, thus providing exquisite control over the anti-resonance position. This insight provides chemists with a large number of options to tune DQI for unprecedented device optimization.

Graphical abstract: Taming quantum interference in single molecule junctions: induction and resonance are key

Back to tab navigation

Article information


Submitted
26 Nov 2019
Accepted
30 Jan 2020
First published
31 Jan 2020

Phys. Chem. Chem. Phys., 2020,22, 5638-5646
Article type
Paper

Taming quantum interference in single molecule junctions: induction and resonance are key

L. A. Zotti and E. Leary, Phys. Chem. Chem. Phys., 2020, 22, 5638
DOI: 10.1039/C9CP06384F

Social activity

Search articles by author

Spotlight

Advertisements