Issue 2, 2020

Predicting the α-relaxation time of glycerol confined in 1.16 nm pores of zeolitic imidazolate frameworks

Abstract

Uhl et al. [J. Chem. Phys., 2019, 150, 024504] studied the molecular dynamics of glycerol confined in a microporous zeolitic imidazolate framework (ZIF-8) with well-defined pore diameters of 1.16 nm by broadband dielectric spectroscopy. Of interest is a fast process in the central part of the pores identified as the α-relaxation of the confined supercooled glycerol with relaxation times τα,conf(T) reduced from τα,bulk(T) of bulk glycerol and having a temperature dependence different from the super-Arrhenius temperature of the latter. The focus of Uhl et al. was relating the confined molecular dynamics to the cooperativity length scales Lcorr(T) of molecular motion above the glass transition, and deducing the limiting high-temperature value of the correlation length of about 1.22 nm. Not yet considered by anyone are the observed values of τα,conf(T) and temperature dependence. Since the cooperativity length scales Lcorr(T) were found to be larger than the pore size of ZIF-8 over the temperature range studied and the density of the glycerol in the pore is possibly lower than the bulk, the cooperativity of the α-relaxation of glycerol confined in ZIF-8 is drastically reduced. Thus, within the framework of the Coupling Model (CM), τα,conf(T) should be nearly the same as the primitive relaxation time τ0(T) for glycerol when devoid of intermolecular coupling and cooperativity. Consistent with the absence of cooperativity of the glycerol confined in ZIF-8, we find the calculated τα,conf(T) are either the same or slightly longer than the calculated values of τ0(T). The quantitative prediction of the CM is verified. At this time we know of no other theory that can make such a quantitative prediction.

Graphical abstract: Predicting the α-relaxation time of glycerol confined in 1.16 nm pores of zeolitic imidazolate frameworks

Article information

Article type
Paper
Submitted
25 Sep 2019
Accepted
01 Dec 2019
First published
02 Dec 2019

Phys. Chem. Chem. Phys., 2020,22, 507-511

Predicting the α-relaxation time of glycerol confined in 1.16 nm pores of zeolitic imidazolate frameworks

K. L. Ngai, P. Lunkenheimer and A. Loidl, Phys. Chem. Chem. Phys., 2020, 22, 507 DOI: 10.1039/C9CP05270D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements