Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 5, 2020
Previous Article Next Article

How to stay out of trouble in RIXS calculations within equation-of-motion coupled-cluster damped response theory? Safe hitchhiking in the excitation manifold by means of core–valence separation

Author affiliations

Abstract

We present a novel approach for computing resonant inelastic X-ray scattering (RIXS) cross sections within the equation-of-motion coupled-cluster (EOM-CC) framework. The approach is based on recasting the sum-over-states expressions for RIXS moments into closed-form expressions by using damped response theory. Damped response formalism allows one to circumvent problems of divergent behavior of response equations in the resonant regime. However, the convergence of response equations in the X-ray frequency range is often erratic due to the electronically metastable (i.e., resonant) nature of the virtual core-excited states embedded in the valence ionization continuum. We circumvent this problematic behavior by extending the core–valence separation (CVS) scheme, which decouples the valence-excited and core-excited configurations of the excitation manifold, into the response domain. The accuracy of the CVS-enabled damped response theory, implemented within the EOM-EE-CCSD (EOM-CC for excitation energies with single and double excitations) framework, is assessed by comparison against standard damped EOM-EE-CCSD response calculations. The capabilities of the new approach are illustrated by calculations of RIXS cross sections for benzene and benzene radical cation.

Graphical abstract: How to stay out of trouble in RIXS calculations within equation-of-motion coupled-cluster damped response theory? Safe hitchhiking in the excitation manifold by means of core–valence separation

Back to tab navigation

Supplementary files

Article information


Submitted
30 Jun 2019
Accepted
25 Sep 2019
First published
25 Sep 2019

Phys. Chem. Chem. Phys., 2020,22, 2629-2641
Article type
Paper

How to stay out of trouble in RIXS calculations within equation-of-motion coupled-cluster damped response theory? Safe hitchhiking in the excitation manifold by means of core–valence separation

K. D. Nanda, M. L. Vidal, R. Faber, S. Coriani and A. I. Krylov, Phys. Chem. Chem. Phys., 2020, 22, 2629
DOI: 10.1039/C9CP03688A

Social activity

Search articles by author

Spotlight

Advertisements