Jump to main content
Jump to site search

Issue 22, 2019
Previous Article Next Article

In situ, operando studies on the size and structure of supported Pt catalysts under supercritical conditions by simultaneous synchrotron-based X-ray techniques

Author affiliations

Abstract

To control the size and structure of supported Pt catalysts, the influence of additional metal particles and the effect of supports were elucidated during the cracking reaction of n-dodecane under supercritical reaction conditions. The dynamical changes in nanocatalysts and catalytic activity are studied under realistic reaction conditions by using a combination of simultaneous temperature-programmed heating, in situ Small Angle X-ray Scattering (SAXS) and X-ray Absorption Near Edge Structure (XANES). In situ SAXS results indicate that the stability of the catalysts increases with Sn concentration. In situ XANES analysis reveals that the degree of oxidation and the electronic states of catalysts are dependent on the amount of Sn. Carbonaceous deposits over spent catalysts were characterized by Raman spectroscopy, indicating that the highest Sn loading inhibits the formation of disordered graphitic lattices, which leads to an increased catalytic activity. SiO2, γ-Al2O3 and Mg(Al)Ox were employed as supports to investigate the support effect on the stability of Pt catalysts. In situ SAXS and XANES results clearly show the improved stability of catalysts on γ-Al2O3 and Mg(Al)Ox supports compared to Pt catalysts on SiO2 and the electronic states of catalysts are strongly influenced by support materials.

Graphical abstract: In situ, operando studies on the size and structure of supported Pt catalysts under supercritical conditions by simultaneous synchrotron-based X-ray techniques

Back to tab navigation

Supplementary files

Article information


Submitted
18 Jan 2019
Accepted
02 May 2019
First published
15 May 2019

Phys. Chem. Chem. Phys., 2019,21, 11740-11747
Article type
Paper
Author version available

In situ, operando studies on the size and structure of supported Pt catalysts under supercritical conditions by simultaneous synchrotron-based X-ray techniques

S. Lee, S. Lee, D. Gerceker, M. D. Kumbhalkar, K. M. Wiaderek, M. R. Ball, M. Mavrikakis, J. A. Dumesic and R. E. Winans, Phys. Chem. Chem. Phys., 2019, 21, 11740
DOI: 10.1039/C9CP00347A

Social activity

Search articles by author

Spotlight

Advertisements