Jump to main content
Jump to site search

Issue 9, 2019
Previous Article Next Article

Electronic structure and reactivity of Fe(iv)oxo species in metal–organic frameworks

Author affiliations

Abstract

We investigate the potential use of Fe(IV)oxo species supported on a metal–organic framework in the catalytic hydroxylation of methane to produce methanol. We use periodic density-functional theory calculations at the 6-31G**/B3LYP level of theory to study the electronic structure and chemical reactivity in the hydrogen abstraction reaction from methane in the presence of Fe(IV)O(oxo) supported on MOF-74. Our results indicate that the Fe(IV)O moiety in MOF-74 is characterised by a highly reactive (quintet) ground-state, with a distance between Fe(IV) and O(oxo) of 1.601 Å, consistent with other high-spin Fe(IV)O inorganic complexes in the gas phase and in aqueous solution. Similar to the latter systems, the highly electrophilic character (and thus the reactivity) of Fe(IV)O in MOF-74 is determined by the presence of a low-lying anti-bonding virtual orbital (3σ*), which acts as an electron acceptor in the early stages of the hydrogen atom abstraction from methane. We estimate an energy barrier for hydrogen abstraction of 50.77 kJ mol−1, which is comparable to the values estimated in other gas-phase and hydrated Fe(IV)O-based complexes with the ability to oxidise methane. Our findings therefore suggest that metal–organic frameworks can provide suitable supports to develop new solid-state catalysts for organic oxidation reactions.

Graphical abstract: Electronic structure and reactivity of Fe(iv)oxo species in metal–organic frameworks

Back to tab navigation

Article information


Submitted
12 Dec 2018
Accepted
04 Feb 2019
First published
04 Feb 2019

This article is Open Access

Phys. Chem. Chem. Phys., 2019,21, 4965-4974
Article type
Paper

Electronic structure and reactivity of Fe(IV)oxo species in metal–organic frameworks

F. Saiz and L. Bernasconi, Phys. Chem. Chem. Phys., 2019, 21, 4965
DOI: 10.1039/C8CP07580H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements