Issue 3, 2019

On the kinetics of the removal of ligands from films of colloidal nanocrystals by plasmas

Abstract

This paper describes the kinetic limitations of etching ligands from colloidal nanocrystal assemblies (CNAs) by plasma processing. We measured the etching kinetics of ligands from a CNA model system (spherical ZrO2 nanocrystals, 2.5–3.5 nm diameter, capped with trioctylphosphine oxide) with inductively coupled plasmas (He and O2 feed gases, powers ranging from 7 to 30 W, at pressures ranging from 100 to 2000 mTorr and exposure times ranging between 6 and 168 h). The etching rate slows down by about one order of magnitude in the first minutes of etching, after which the rate of carbon removal becomes proportional to the third power of the carbon concentration in the CNA. Pressure oscillations in the plasma chamber significantly accelerate the overall rate of etching. These results indicate that the rate of etching is mostly affected by two main factors: (i) the crosslinking of the ligands in the first stage of plasma exposure, and (ii) the formation of a boundary layer at the surface of the CNA. Optimized conditions of plasma processing allow for a 60-fold improvement in etching rates compared to the previous state of the art and make the timeframes of plasma processing comparable to those of calcination.

Graphical abstract: On the kinetics of the removal of ligands from films of colloidal nanocrystals by plasmas

Supplementary files

Article information

Article type
Paper
Submitted
06 Nov 2018
Accepted
17 Dec 2018
First published
20 Dec 2018

Phys. Chem. Chem. Phys., 2019,21, 1614-1622

Author version available

On the kinetics of the removal of ligands from films of colloidal nanocrystals by plasmas

S. Shaw, T. F. Silva, P. Mohapatra, D. Mendivelso-Perez, X. Tian, F. Naab, C. L. Rodrigues, E. A. Smith and L. Cademartiri, Phys. Chem. Chem. Phys., 2019, 21, 1614 DOI: 10.1039/C8CP06890A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements