Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 7, 2019
Previous Article Next Article

Far-IR and UV spectral signatures of controlled complexation and microhydration of the polycyclic aromatic hydrocarbon acenaphthene

Author affiliations

Abstract

In this work we report on the experimental and theoretical investigations of the progressional complexation of the polycyclic aromatic hydrocarbon (PAH) acenaphthene with itself and with water. In the interstellar medium, PAH complexes are an important link between molecular gas and solid state configurations of carbon, and in the form of grains they are postulated to serve as chemical catalysts. However, no direct detection of PAHs or their (microhydrated) complexes in interstellar space has been achieved as of yet. Therefore, we provide UV and far-infrared ion dip spectra of homogeneous PAH multimers and their hydrated clusters. The far-IR region of the IR spectrum is especially interesting since it contains the most spectral features that arise due to complexation or microhydration. We present microhydrated PAH complexes up to the third order, where we show that the water clusters are locked with little perturbation on the different PAH platforms. Density functional theory (DFT) calculations involving hydrogen bond interactions still seem challenging for predicting the far-IR frequency range, although applying anharmonic corrections leads to slight improvements.

Graphical abstract: Far-IR and UV spectral signatures of controlled complexation and microhydration of the polycyclic aromatic hydrocarbon acenaphthene

Back to tab navigation

Supplementary files

Article information


Submitted
15 Jul 2018
Accepted
10 Oct 2018
First published
11 Oct 2018

Phys. Chem. Chem. Phys., 2019,21, 3414-3422
Article type
Paper

Far-IR and UV spectral signatures of controlled complexation and microhydration of the polycyclic aromatic hydrocarbon acenaphthene

A. K. Lemmens, S. Gruet, A. L. Steber, J. Antony, S. Grimme, M. Schnell and A. M. Rijs, Phys. Chem. Chem. Phys., 2019, 21, 3414
DOI: 10.1039/C8CP04480E

Social activity

Search articles by author

Spotlight

Advertisements