Issue 44, 2018

Relationship between water permeation and flip-flop motion in a bilayer membrane

Abstract

The lipid bilayer membrane facilitates various biological reactions and is thus an essential structure that sustains all higher forms of life. The unique local environment of the lipid bilayer plays critical roles for the diffusion of biomolecules as well as water molecules in biological reactions. Although fluctuation of the cell membrane is expected to allow for the transport of some water molecules, the flip-flop of lipid molecules corresponds to lipid transport between membrane leaflets, and is considered to be an important process to regulate the lipid composition of biological membranes. However, the relationship between these flip-flop phenomena and surrounding water molecules remains poorly understood. We hypothesized that the flip-flop is caused by water molecules permeating through the cell membrane. To test this hypothesis, we used millisecond-order coarse-grained molecular simulations (dissipative particle dynamics) to investigate the distance between water molecules and lipid molecules depending on the position of the lipid molecule. The results clearly showed that water molecules affect the flip-flop motion in the early stage, but have minimal contribution to the subsequent behavior. Moreover, based on the results of dissipative particle dynamics simulation, we computed several first-passage-time (FPT) quantities to describe the detailed dynamics of water permeation. We modeled arrangements in the middle of the flip-flop process, which were compared with the arrangement without lipid molecules. Overall, our results indicate that lipid molecules located both in perpendicular and parallel arrangements largely affect water permeation. These findings provide new insight into the detailed relationship between water permeation and the flip-flop motion.

Graphical abstract: Relationship between water permeation and flip-flop motion in a bilayer membrane

Article information

Article type
Paper
Submitted
20 Jul 2018
Accepted
23 Oct 2018
First published
26 Oct 2018

Phys. Chem. Chem. Phys., 2018,20, 28155-28161

Relationship between water permeation and flip-flop motion in a bilayer membrane

T. Inokuchi and N. Arai, Phys. Chem. Chem. Phys., 2018, 20, 28155 DOI: 10.1039/C8CP04610G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements