Issue 38, 2018

PVDF–MWNT interactions control process induced β-lamellar morphology and orientation in the nanocomposites

Abstract

The effect of methylene blue (MB) modified multiwall carbon nanotubes (MWNTs) on the nucleation and morphology of polyvinylidene fluoride (PVDF) in comparison with the effect of MWNTs was systematically assessed by DSC, 13C NMR, FT-IR, TEM, WAXS and SAXS analysis. TEM analysis of ultra-microtomed samples revealed that MB modification enhanced the dispersibility of MWNTs in PVDF. Further, the nanocomposites were subjected to mechanical rolling and the synergistic effect of processing and fillers on the PVDF morphology (before and after rolling) at different length scales was studied. Both FT-IR and WAXS analyses suggested that mechanical rolling transforms α-PVDF to β-PVDF (ca. 88%). TEM and two-dimensional WAXS analyses revealed that the MWNTs and β-crystallites are oriented preferentially along the rolling direction and the degree of orientation is not influenced by the fillers suggesting that crystallite orientation is fully controlled by mechanical rolling. On the other hand, β-lamellae showed perpendicular orientation with respect to the rolling direction. Unlike β-crystallites, the β-lamellar morphology and orientation are highly governed by the fillers as evident from SAXS analysis. Using MWNTs and the MWNT–MB π-complex, we demonstrate that the β-lamellar morphology and degree of orientation are controlled by the extent of interaction of fillers with PVDF. Interestingly, both β-lamellar morphology and degree of orientation correlate well with the mechanical properties of the rolled PVDF. More specifically, the dynamic storage modulus of the samples in the rolling direction increases with increasing β-lamellar morphology and degree of orientation. The present work demonstrates that the polymer–filler interaction plays a crucial role in regulating the processed polymer morphology and can be tuned by appropriately modifying the surface of fillers through either covalent or non-covalent interactions.

Graphical abstract: PVDF–MWNT interactions control process induced β-lamellar morphology and orientation in the nanocomposites

Supplementary files

Article information

Article type
Paper
Submitted
13 Jun 2018
Accepted
01 Sep 2018
First published
03 Sep 2018

Phys. Chem. Chem. Phys., 2018,20, 24821-24831

PVDF–MWNT interactions control process induced β-lamellar morphology and orientation in the nanocomposites

M. R. Mani, A. Gebrekrstos, G. Madras, P. Pötschke and S. Bose, Phys. Chem. Chem. Phys., 2018, 20, 24821 DOI: 10.1039/C8CP03739F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements