Issue 42, 2018

Ice-binding site of surface-bound type III antifreeze protein partially decoupled from water

Abstract

Type III antifreeze proteins (AFP III) have been widely recognized as one class of ice-binding proteins produced by several biological organisms to withstand freezing conditions. Besides their ability to restrict ice growth through their ice-binding site (IBS), AFP III have also been shown to possess a great propensity for hydrophobic surfaces such as the air–water interface. Yet, it is not known whether AFP III adsorb with a specific orientation and how hydrophobic interactions affect the IBS. Molecular insights on the accessibility of the IBS and its interactions with water are important for understanding AFP III action in vivo but also for their application as ice-inhibiting agents for deicing, frozen food storage, as well as for long-term blood and organ cryo-preservation. Here, the orientation of fish AFP III adsorbed at the air–water interface has been studied using a combination of molecular dynamics (MD) simulations and vibrational sum-frequency generation (SFG) spectroscopy together with spectral calculations. The SFG/MD analysis indicated that when AFP III adsorbs at the air–water interface, it mostly retains its native state and orients with a tilt angle of 120° with respect to the surface normal. We found that the IBS is only partially solvated, leaving the pyramidal ice plane binding domain exposed to the vapor phase. These findings suggest that interactions with hydrophobic interfaces (e.g., cell membranes, polymers) could lead to the partial decoupling of the IBS from water and, to some extent, to a loss of AFP III antifreezing activity.

Graphical abstract: Ice-binding site of surface-bound type III antifreeze protein partially decoupled from water

Supplementary files

Article information

Article type
Paper
Submitted
28 May 2018
Accepted
14 Sep 2018
First published
17 Sep 2018
This article is Open Access
Creative Commons BY license

Phys. Chem. Chem. Phys., 2018,20, 26926-26933

Ice-binding site of surface-bound type III antifreeze protein partially decoupled from water

D. Verreault, S. Alamdari, S. J. Roeters, R. Pandey, J. Pfaendtner and T. Weidner, Phys. Chem. Chem. Phys., 2018, 20, 26926 DOI: 10.1039/C8CP03382J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements