Issue 31, 2018

Understanding dissolution process of chitin crystal in ionic liquids: theoretical study

Abstract

Chitin is a promising biomass resource and has high potential for industrial applications owing to its huge annual production in nature. However, it exhibits poor processability and solubility due to its very stable and crystalline character. Recently, ionic liquids (ILs) have attracted attention as solvents for structural polysaccharides – for example, 1-allyl-3-methylimidazolium bromide (AMIMBr) has been found to dissolve chitin. As few ILs are known to dissolve chitin, little research has been conducted on the dissolution mechanism involved. In this study, we have adopted a molecular dynamics (MD) approach to study the dissolution of chitin crystals in imidazolium-based ILs. The MD simulation in AMIMBr has demonstrated that the dissolution process involved peeling of chitin chains from the crystal surface, with Br cleaving the chitin hydrogen bonds, and AMIM+ preventing a return to the crystalline phase after the peeling. By contrast, in imidazolium acetates, which has also been reported to dissolve chitin, although the molecular chains are peeled off, the peeled chains occasionally return to the crystalline phase. Furthermore, the MD trajectory analysis has revealed that the solubility of chitin is well correlated with the number of intermolecular hydrogen bonds by acetamido groups in the chitin crystal. It has been experimentally proven that mixing a small amount of 2-bromoethyl acetate, as a bromide generator, with 1-allyl-3-methylimidazolium chloride can enhance chitin solubility, which supports the dissolution mechanism indicated by the above theoretical results.

Graphical abstract: Understanding dissolution process of chitin crystal in ionic liquids: theoretical study

Supplementary files

Article information

Article type
Paper
Submitted
01 May 2018
Accepted
23 Jul 2018
First published
30 Jul 2018

Phys. Chem. Chem. Phys., 2018,20, 20669-20677

Understanding dissolution process of chitin crystal in ionic liquids: theoretical study

T. Uto, S. Idenoue, K. Yamamoto and J. Kadokawa, Phys. Chem. Chem. Phys., 2018, 20, 20669 DOI: 10.1039/C8CP02749H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements