Issue 28, 2018

Revisiting the catalytic mechanism of Mo–Cu carbon monoxide dehydrogenase using QM/MM and DFT calculations

Abstract

Previous density functional theory (DFT) studies have shown that the release of the produced carbon dioxide (CO2) from an active-site cluster is a thermodynamically or kinetically difficult step in the enzymatic carbon monoxide (CO) oxidation catalyzed by Mo–Cu carbon monoxide dehydrogenase (Mo–Cu CODH). To better understand the effect of the protein environment on this difficult CO2 release step as well as other reaction steps, we applied hybrid quantum mechanics and molecular mechanics (QM/MM) calculations to the Mo–Cu CODH enzyme. The results show that in the first step, the equatorial Mo[double bond, length as m-dash]O group in the active-site cluster attacks the nearby CO molecule bound to the Cu site. Afterward, a stable thiocarbonate intermediate is formed in which the CO2 molecule is embedded and the copper–S(μ-sulfido) bond is broken. A free CO2 molecule, i.e., the final product, is then released from the active-site cluster, not directly from the thiocarbonate intermediate but via a previously formed intermediate that also contains CO2 but retains the Cu–S(μ-sulfido) bond. In contrast to the previous DFT results, the calculated barrier for this process was low in our QM/MM calculations. An additional QM/MM analysis of the barrier height showed that the effect of the protein environment on this barrier lowering is not very large. We found that the reason for the low barrier obtained by QM/MM is that the barrier for CO2 release is already not high at the DFT level. These results allow us to conclude that the CO oxidation reaction passes through the formation of a thiocarbonate intermediate, and that the subsequent CO2 release is kinetically not difficult. Nevertheless, the protein environment has an important role to play in making the latter process thermodynamically favored. No low-barrier pathway for the product release could be obtained for the reaction of n-butylisocyanide, which is consistent with the experimental fact that n-butylisocyanide inhibits Mo–Cu CODH.

Graphical abstract: Revisiting the catalytic mechanism of Mo–Cu carbon monoxide dehydrogenase using QM/MM and DFT calculations

Supplementary files

Article information

Article type
Paper
Submitted
06 Feb 2018
Accepted
17 Apr 2018
First published
10 May 2018

Phys. Chem. Chem. Phys., 2018,20, 18938-18948

Revisiting the catalytic mechanism of Mo–Cu carbon monoxide dehydrogenase using QM/MM and DFT calculations

K. Xu and H. Hirao, Phys. Chem. Chem. Phys., 2018, 20, 18938 DOI: 10.1039/C8CP00858B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements