Issue 41, 2017

DFT investigation of the interaction between single-walled carbon nanotubes and fluorene-based conjugated oligomers

Abstract

π-Conjugated oligomers with relatively short molecular backbones can be used effectively in dispersion of carbon nanotubes (CNTs). In this paper, we present a systematic study on interactions between diphenylene-fluorene oligomers (DPFs) and single-walled CNTs (SWCNTs) using density functional theory (DFT) calculations. Four DFT methods are used in this work: the long range (LR)-corrected CAM-B3LYP, the dispersion (D)-corrected B97D, the LR- and D-corrected wB97XD, and the hybrid B3LYP. The DPFs examined in this study contain different functional groups attached to the π-conjugated backbone, including two different end groups, carboxaldehyde (ALD) and dithiafulvenyl (DTF), and three different side chains (SCs), C8H17, OC10H21, and SC10H21. The computational results disclose the effects of end groups, SCs, and DFT methods on structures, dipole moments, and energetics of isolated DPFs and DPF/SWCNT combinations. Consistent with our previous study (involving oligo(p-phenylene ethynylene)s (OPEs)) [Aljohani et al., J. Phys. Chem. C, 2017, 121, 4692–4702], our results herein demonstrate that the type of end group plays a key role in determining the strength of interactions between SWNTs and conjugated oligomers. In particular, DTF-endcapped oligomers have a stronger electrostatic interaction with SWCNT than ALD-endcapped oligomers do. As a result, DTF-endcapped conjugated oligomers become more polarized than ALD-endcapped oligomers after complexing with SWCNTs. The magnitude of binding energy, on the other hand, shows dependence on the orientation of the backbone and side chains of these oligomers relative to the SWCNT which in the case of fluorene-based oligomers is not always favourable for optimal binding. This study indicates that fluorene-based oligomers might not be as good dispersants of SWCNTs as OPEs.

Graphical abstract: DFT investigation of the interaction between single-walled carbon nanotubes and fluorene-based conjugated oligomers

Supplementary files

Article information

Article type
Paper
Submitted
18 Jul 2017
Accepted
04 Oct 2017
First published
04 Oct 2017

Phys. Chem. Chem. Phys., 2017,19, 28071-28082

DFT investigation of the interaction between single-walled carbon nanotubes and fluorene-based conjugated oligomers

M. Z. H. Khan, A. I. Alrawashdeh, S. Aljohani, Y. Zhao and J. B. Lagowski, Phys. Chem. Chem. Phys., 2017, 19, 28071 DOI: 10.1039/C7CP04851C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements