Issue 22, 2017

Reaction mechanism and product branching ratios of the CH + C3H4 reactions: a theoretical study

Abstract

Two ground-state CH radical reactions with the C3H4 isomers allene and methylacetylene occurring along the C4H5 potential energy surface (PES) were studied to probe the reaction mechanisms and final product distributions. The calculations were performed using a CCSD(T)-F12//B2PLYPD3 PES in combination with the 1-D chemical master equation. The reaction between the CH radical and allene was found to lead to exclusive “funneling” of the energized C4H5 intermediates into linear C4H5 configurations before reaching the exit channels, regardless of the specific nature of the initial bimolecular reactive encounter. In the case of the CH radical reaction with methylacetylene, energized C4H5 three-membered ring structures underwent H loss in significant amounts resulting in the production of a cyclic C4H4 methylenecyclopropene product, in accordance with experiments. The theoretical product distribution at room temperature for methylacetylene + CH was ∼35% methylenecyclopropene, ∼36% vinylacetylene, and ∼28% 1,2,3-butatriene, which is in agreement with the available experimental data. The distribution for allene + CH was ∼93% vinylacetylene, ∼4% 1,2,3-butatriene and ∼3% acetylene + vinyl, which overestimates the experimental yield of vinylacetylene and underestimates that of 1,2,3-butatriene by ∼10%. The possible reasons for this slight quantitative deviation of the theoretical results obtained within statistical treatment from the experiment are discussed.

Graphical abstract: Reaction mechanism and product branching ratios of the CH + C3H4 reactions: a theoretical study

Supplementary files

Article information

Article type
Paper
Submitted
23 Mar 2017
Accepted
03 May 2017
First published
05 May 2017

Phys. Chem. Chem. Phys., 2017,19, 14543-14554

Reaction mechanism and product branching ratios of the CH + C3H4 reactions: a theoretical study

J. M. Ribeiro and A. M. Mebel, Phys. Chem. Chem. Phys., 2017, 19, 14543 DOI: 10.1039/C7CP01873H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements