Issue 5, 2017

The dynamic binding of cholesterol to the multiple sites of C99: as revealed by coarse-grained and all-atom simulations

Abstract

It is generally believed that the etiology of Alzheimer's disease (AD) is closely related to the amyloid-β polypeptides, produced from γ-secretase cleavage of C99. There is preliminary evidence that cholesterol directly activates γ-secretase cleavage of C99 through mechanisms that have not been understood so far. In this article, coarse-grained (CG) and all-atom (AT) simulations were employed to investigate the association between C99 and cholesterol, which is essential for our understanding of the role of cholesterol in the amyloidogenic pathway. Firstly, we find that both the N-terminus and the C-terminus of the C99 transmembrane domain (TMD) show interactions with cholesterol. Secondly, a multi-site dynamic cholesterol binding model was captured from the simulations, where 6 binding sites in the C99 TMD were presented. The analyses of the binding energies show that cholesterol prefers the site no. 1, 2, 4 and 5 over others. The most favorable binding energy of nearly −58.857 kJ mol−1 is from site 1, the repeat GxxxG motif. There are two pathways and two binding states of cholesterol binding to this site. Ser697 and Phe690 contribute most to the stabilization of the tightly binding state and the loosely binding state, respectively. The other binding sites described may also be potential drug targets. Thirdly, the residues GAVILMTKF, especially IVKF play a key role in this association. The C99 model appears to suggest a new mechanism for cholesterol binding. Finally, the multiple-site dynamic cholesterol binding model better explains the hypotheses that cholesterol promotes the amyloidogenic AβPP route. The GxxxA motif in the middle of the C99 transmembrane domain is completely exposed without cholesterol sheltering, which might help γ-secretase identify the cleavage sites and then promote γ-cleavage. Our results provide a detailed picture of dynamic cholesterol binding, which is crucial to our recognition of the potential influence of cholesterol on the C99 process and the etiology of AD.

Graphical abstract: The dynamic binding of cholesterol to the multiple sites of C99: as revealed by coarse-grained and all-atom simulations

Supplementary files

Article information

Article type
Paper
Submitted
17 Nov 2016
Accepted
04 Jan 2017
First published
04 Jan 2017

Phys. Chem. Chem. Phys., 2017,19, 3845-3856

The dynamic binding of cholesterol to the multiple sites of C99: as revealed by coarse-grained and all-atom simulations

C. Li, Q. Xu, R. Gu, J. Qu and D. Wei, Phys. Chem. Chem. Phys., 2017, 19, 3845 DOI: 10.1039/C6CP07873G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements