Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 27th March 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.

Issue 37, 2016
Previous Article Next Article

Adsorption in zeolites using mechanically embedded ONIOM clusters

Author affiliations


We have explored mechanically embedded three-layer QM/QM/MM ONIOM models for computational studies of binding in Al-substituted zeolites. In all the models considered, the high-level-theory layer consists of the adsorbate molecule and of the framework atoms within the first two coordination spheres of the Al atom and is treated at the M06-2X/6-311G(2df,p) level. For simplicity, flexibility and routine applicability, the outer, low-level-theory layer is treated with the UFF. We have modelled the intermediate-level layer quantum mechanically and investigated the performance of HF theory and of three DFT functionals, B3LYP, M06-2X and ωB97x-D, for different layer sizes and various basis sets, with and without BSSE corrections. We have studied the binding of sixteen probe molecules in H-MFI and compared the computed adsorption enthalpies with published experimental data. We have demonstrated that HF and B3LYP are inadequate for the description of the interactions between the probe molecules and the framework surrounding the metal site of the zeolite on account of their inability to capture dispersion forces. Both M06-2X and ωB97x-D on average converge within ca. 10% of the experimental values. We have further demonstrated transferability of the approach by computing the binding enthalpies of n-alkanes (C1–C8) in H-MFI, H-BEA and H-FAU, with very satisfactory agreement with experiment. The computed entropies of adsorption of n-alkanes in H-MFI are also found to be in good agreement with experimental data. Finally, we compare with published adsorption energies calculated by periodic-DFT for n-C3 to n-C6 alkanes, water and methanol in H-ZSM-5 and find very good agreement.

Graphical abstract: Adsorption in zeolites using mechanically embedded ONIOM clusters

Back to tab navigation

Supplementary files

Publication details

The article was received on 13 May 2016, accepted on 29 Aug 2016 and first published on 01 Sep 2016

Article type: Paper
DOI: 10.1039/C6CP03266D
Citation: Phys. Chem. Chem. Phys., 2016,18, 26094-26106
  • Open access: Creative Commons BY license
  •   Request permissions

    Adsorption in zeolites using mechanically embedded ONIOM clusters

    R. E. Patet, S. Caratzoulas and D. G. Vlachos, Phys. Chem. Chem. Phys., 2016, 18, 26094
    DOI: 10.1039/C6CP03266D

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author