Issue 21, 2016

Thickness dependence of surface energy and contact angle of water droplets on ultrathin MoS2 films

Abstract

We have performed a systematic density functional study of surface energy of MoS2 films as a function of thickness from one to twelve layers with the consideration of van der Waals (vdW) interactions using the vdW-DF and DFT-D2 methods. Both vdW schemes show that the surface energy will increase with the increase of the number of atomic layers and converge to a constant value at about six layers. Based on the calculated surface energies, we further analyze the surface contact angle of water droplets on the MoS2 film surface using Young's equation as a function of thickness in comparison with experiments, from which the water–MoS2 interfacial energy is derived to be independent of MoS2 thickness. Our calculations indicate that the vdW interactions between the MoS2 layers play an important role in determining surface energy, and results in the thickness dependence of the contact angle of water droplets on the MoS2 film surface. Our results explain well the recent wetting experiment [Nano Lett., 2014, 14(8), 4314], and will be useful for future studies of physical and chemical properties of ultrathin MoS2 films.

Graphical abstract: Thickness dependence of surface energy and contact angle of water droplets on ultrathin MoS2 films

Supplementary files

Article information

Article type
Paper
Submitted
04 Jan 2016
Accepted
29 Apr 2016
First published
04 May 2016

Phys. Chem. Chem. Phys., 2016,18, 14449-14453

Thickness dependence of surface energy and contact angle of water droplets on ultrathin MoS2 films

Y. Guo, Z. Wang, L. Zhang, X. Shen and F. Liu, Phys. Chem. Chem. Phys., 2016, 18, 14449 DOI: 10.1039/C6CP00036C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements