Jump to main content
Jump to site search

Issue 4, 2016
Previous Article Next Article

Nanocrystalline anatase TiO2/reduced graphene oxide composite films as photoanodes for photoelectrochemical water splitting studies: the role of reduced graphene oxide

Author affiliations

Abstract

Nanocrystalline TiO2 and reduced graphene oxide (TiO2/RGO) composite films were prepared by combining a sol–gel method with hydrothermal treatment, employing titanium isopropoxide (Ti(OiPr)4) and graphene oxide (GO) as starting materials. Although several reports in the literature have explored the benefits of RGO addition in titania films for photocatalysis and water splitting reactions, the role of RGO in the composite is always described as that of a material that is able to act as an electron acceptor and transport electrons more efficiently. However, in most of these reports, no clear evidence for this “role” is presented, and the main focus is deviated to the improved efficiency and not to the reasons for said efficiency. In this study, we employed several techniques to definitively present our understanding of the role of RGO in titania composite films. The TiO2/RGO composite films were characterized by X ray diffraction, Raman spectroscopy, microscopy and electrochemical techniques. In photoelectrochemical water splitting studies, the TiO2/RGO(0.1%) photoelectrodes showed the highest photocurrent density values (0.20 mA cm−2 at 1.23 VRHE) compared to other electrodes, with an increase of 78% in relation to pristine TiO2 film (0.11 mA cm−2 at 1.23 VRHE). The transient absorption spectroscopy (TAS) results indicated increases in the lifetime and yield of both the photogenerated holes and electrons. Interestingly, the TiO2/RGO(0.1%) film exhibited the best charge generation upon excitation, corroborating the photoelectrochemical data. We proposed that in films with lower concentrations (<0.1 wt%), the RGO sheets are electron acceptors, and a decrease in the charge recombination processes is the immediate consequence. Thus, both holes and electrons live longer and contribute more effectively to the photocurrent density.

Graphical abstract: Nanocrystalline anatase TiO2/reduced graphene oxide composite films as photoanodes for photoelectrochemical water splitting studies: the role of reduced graphene oxide

Back to tab navigation

Supplementary files

Publication details

The article was received on 03 Nov 2015, accepted on 04 Dec 2015 and first published on 07 Dec 2015


Article type: Paper
DOI: 10.1039/C5CP06707C
Citation: Phys. Chem. Chem. Phys., 2016,18, 2608-2616

  •   Request permissions

    Nanocrystalline anatase TiO2/reduced graphene oxide composite films as photoanodes for photoelectrochemical water splitting studies: the role of reduced graphene oxide

    A. Morais, C. Longo, J. R. Araujo, M. Barroso, J. R. Durrant and A. F. Nogueira, Phys. Chem. Chem. Phys., 2016, 18, 2608
    DOI: 10.1039/C5CP06707C

Search articles by author

Spotlight

Advertisements