Jump to main content
Jump to site search

Issue 43, 2015
Previous Article Next Article

Molecular adsorption at Pt(111). How accurate are DFT functionals?

Author affiliations


Molecular chemisorption at a metal surface is a key step for many processes, such as catalysis, electrochemistry, surface treatment, tribology and friction. Modeling with density functional theory is largely used on these systems. From a detailed comparison with accurate micro-calorimetric data on ten systems (involving ethylene, cyclohexene, benzene, naphthalene, CO, O2, H2, methane, ethane), we study the accuracy, for chemisorption on Pt(111), of five exchange–correlation functionals including one generalized gradient approximation functional (PBE) and four functionals that take into account van der Waals interactions (optPBE-vdW, optB86b-vdW, BEEF-vdW, PBE-dDsC). If the functionals used provide very similar geometries and electronic structures, as shown by projected density of states, they give strikingly different results for the adsorption energy of molecules on Pt(111). Among the set of chemisorption data, the lowest mean absolute deviations (MAD) are obtained with the optPBE-vdW and PBE-dDsC functionals (∼0.2 eV) while PBE and optB86b-vdW give twice larger MAD (∼0.45 eV). BEEF-vdW is intermediate with a MAD of 0.33 eV. For laterally π-bound unsaturated hydrocarbons (cyclohexene, benzene, naphthalene) the PBE and the BEEF-vdW functionals are severally under-bound, while optPBE-vdW and PBE-dDsC provide a good match with experiments. Hence both the incorporation of van der Waals dispersive forces and the choice of the exchange functional have a key influence on the chemisorption energy. Vertically bound ethylidyne and CO are in contrast over-bound with all functionals, the best agreement being obtained with BEEF-vdW. None of the selected functionals hence provides a universally accurate treatment of chemisorption energies.

Graphical abstract: Molecular adsorption at Pt(111). How accurate are DFT functionals?

Back to tab navigation

Supplementary files

Publication details

The article was received on 31 Jul 2015, accepted on 23 Sep 2015 and first published on 02 Oct 2015

Article type: Paper
DOI: 10.1039/C5CP04534G
Phys. Chem. Chem. Phys., 2015,17, 28921-28930

  •   Request permissions

    Molecular adsorption at Pt(111). How accurate are DFT functionals?

    S. Gautier, S. N. Steinmann, C. Michel, P. Fleurat-Lessard and P. Sautet, Phys. Chem. Chem. Phys., 2015, 17, 28921
    DOI: 10.1039/C5CP04534G

Search articles by author