Issue 41, 2015

A photoionization mass spectroscopic study on the formation of phosphanes in low temperature phosphine ices

Abstract

Isovalency rationalizes fundamental chemical properties of elements in the same group, but often fails to account for differences in the molecular structure due to the distinct atomic sizes and electron-pair repulsion of the isovalent atoms. With respect to main group V, saturated hydrides of nitrogen are limited to ammonia (NH3) and hydrazine (N2H4) along with ionic and/or metal-bound triazene (N3H5) and potentially tetrazene (N4H6). Here, we present a novel approach for synthesizing and detecting phosphanes formed via non-classical synthesis exploiting irradiation of phosphine ices with energetic electrons, subliming the newly formed phosphanes via fractionated sublimation, and detecting these species via reflectron time-of-flight mass spectrometry (ReTOF) coupled with vacuum ultraviolet (VUV) single photon ionization. This approach is able to synthesize, to separate, and to detect phosphanes as large as octaphosphane (P8H10), which far out-performs the traditional analytical tools of infrared spectroscopy and residual gas analysis via mass spectrometry coupled with electron impact ionization that could barely detect triphosphane (P3H5) thus providing an unconventional tool to prepare complex inorganic compounds such as a homologues series of phosphanes, which are difficult to synthesize via classical synthetic methods.

Graphical abstract: A photoionization mass spectroscopic study on the formation of phosphanes in low temperature phosphine ices

Supplementary files

Article information

Article type
Paper
Submitted
16 May 2015
Accepted
21 Jul 2015
First published
05 Aug 2015

Phys. Chem. Chem. Phys., 2015,17, 27281-27291

A photoionization mass spectroscopic study on the formation of phosphanes in low temperature phosphine ices

A. M. Turner, M. J. Abplanalp, S. Y. Chen, Y. T. Chen, A. H. H. Chang and R. I. Kaiser, Phys. Chem. Chem. Phys., 2015, 17, 27281 DOI: 10.1039/C5CP02835C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements