Issue 22, 2015

Ultrafast vibrational and structural dynamics of dimeric cyclopentadienyliron dicarbonyl examined by infrared spectroscopy

Abstract

In this work, we carry out steady-state, femtosecond pump–probe and two-dimensional (2D) infrared spectroscopic studies on dimeric π-cyclopentadienyliron dicarbonyl [CpFe(CO)2]2 in the C[triple bond, length as m-dash]O stretching vibration frequency region in CCl4 and CH2Cl2. The cis and trans isomers, in terms of the position of two terminal C[triple bond, length as m-dash]O groups, are found to coexist in the two solvents. A weak asymmetric stretching peak of the cis-isomer is revealed under that of the IR-active trans-isomer by analyzing the 2D infrared cross peak, which is supported by ab initio computations. Furthermore, vibrational population relaxation is found to be both solute and solvent dependent (ranging from 21 ps to 32 ps) – the fastest dynamics is found for the trans-isomer in the polar solvent environment, which is believed to be associated with the availability and the number of efficient energy accepting channels for solvent molecules. The spectral diffusion dynamics of the C[triple bond, length as m-dash]O stretching vibrations, occurring on an even faster time scale (1 ps to 3 ps), mainly exhibits solvent dependence – faster dynamics is found in the polar solvent, involving weak and rapidly fluctuating hydrogen bonding interactions between CH2 groups of the solvent and the terminal carbonyls of solutes.

Graphical abstract: Ultrafast vibrational and structural dynamics of dimeric cyclopentadienyliron dicarbonyl examined by infrared spectroscopy

Article information

Article type
Paper
Submitted
15 Feb 2015
Accepted
22 Apr 2015
First published
29 Apr 2015

Phys. Chem. Chem. Phys., 2015,17, 14542-14550

Author version available

Ultrafast vibrational and structural dynamics of dimeric cyclopentadienyliron dicarbonyl examined by infrared spectroscopy

F. Yang, P. Yu, J. Zhao, J. Shi and J. Wang, Phys. Chem. Chem. Phys., 2015, 17, 14542 DOI: 10.1039/C5CP00965K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements