Issue 22, 2015

Ion intercalation dynamics of electrosynthesized mesoporous WO3 thin films studied by multi-scale coupled electrogravimetric methods

Abstract

Mesoporous WO3 thin films were prepared electrochemically by using an ionic surfactant during the synthesis, and the electrochemical properties are investigated in comparison with their dense analogues. This report specifically highlights the suitability of a time resolved coupled electrogravimetric method to follow meticulously the ion intercalation/extraction phenomena which revealed the enhanced ion intercalation/extraction behavior of electrodeposited mesoporous WO3 thin films for diverse applications in energy storage and electrochromism. This methodology (electrochemical impedance spectroscopy (EIS) and its coupling with a fast quartz crystal microbalance (QCM)) has the ability to detect the contribution of the charged or uncharged species during the electrochemical processes, and to deconvolute the global EQCM responses into the anionic, cationic, and the free solvent contributions. Our study identifies the involvement of several charged species (Li+, Li+·H2O) in the compensation of charge, and H2O molecules indirectly contribute to the process in both dense and mesoporous WO3 thin films. Even a slight contribution of ClO4 ions was detected in the case of mesoporous analogues. The results of the study indicate that the transfer resistances of Li+ and Li+·H2O are decreased when the WO3 films are mesoporous. A more significant difference is observed for the larger and partially dehydrated Li+·H2O ions, suggesting that increased surface area and pore volume created by mesoporous morphology facilitate the transfer of larger charged species. The relative concentration changes of cations are also magnified in the mesoporous films. The final concentration variations are higher in mesoporous films than that in the dense analogues; ∼4 times and ∼10 times higher for Li+ and for Li+·H2O, respectively. To the best of our knowledge, an unambiguous identification of species other than desolvated cations (e.g. Li+ ions), the information on their transfer dynamics and quantification of the transferred species have never been reported in the literature to describe the charge compensation process in WO3 based electrodes.

Graphical abstract: Ion intercalation dynamics of electrosynthesized mesoporous WO3 thin films studied by multi-scale coupled electrogravimetric methods

Supplementary files

Article information

Article type
Paper
Submitted
19 Jan 2015
Accepted
06 May 2015
First published
06 May 2015
This article is Open Access
Creative Commons BY license

Phys. Chem. Chem. Phys., 2015,17, 14773-14787

Ion intercalation dynamics of electrosynthesized mesoporous WO3 thin films studied by multi-scale coupled electrogravimetric methods

F. Razzaghi, C. Debiemme-Chouvy, F. Pillier, H. Perrot and O. Sel, Phys. Chem. Chem. Phys., 2015, 17, 14773 DOI: 10.1039/C5CP00336A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements