Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 17, 2015
Previous Article Next Article

Fragmentation mechanisms of cytosine, adenine and guanine ionized bases

Author affiliations

Abstract

The different fragmentation channels of cytosine, adenine and guanine have been studied through DFT calculations. The electronic structure of bases, their cations, and the fragments obtained by breaking bonds provides a good understanding of the fragmentation process that can complete the experimental approach. The calculations allow assigning various fragments to the given peaks. The comparison between the energy required for the formation of fragments and the peak intensity in the mass spectrum is used. For cytosine and guanine the elimination of the HNCO molecule is a major route of dissociation, while for adenine multiple loss of HCN or HNC can be followed up to small fragments. For cytosine, this corresponds to the initial bond cleavage of N3–C4/N1–C2, which represents the main dissociation route. For guanine the release of HNCO is obtained through the N1–C2/C5–C6 bond cleavage (reverse order also possible) leading to the largest peak of the spectrum. The corresponding energies of 3.5 and 3.9 eV are typically in the range available in the experiments. The loss of NH3 or HCN is also possible but requires more energy. For adenine, fragmentation consists of multiple loss of the HCN molecule and the main route corresponding to HC8N9 loss is followed by the release of HC2N1.

Graphical abstract: Fragmentation mechanisms of cytosine, adenine and guanine ionized bases

Back to tab navigation

Article information


Submitted
08 Jan 2015
Accepted
27 Mar 2015
First published
31 Mar 2015

Phys. Chem. Chem. Phys., 2015,17, 11813-11826
Article type
Paper

Fragmentation mechanisms of cytosine, adenine and guanine ionized bases

L. Sadr-Arani, P. Mignon, H. Chermette, H. Abdoul-Carime, B. Farizon and M. Farizon, Phys. Chem. Chem. Phys., 2015, 17, 11813
DOI: 10.1039/C5CP00104H

Social activity

Search articles by author

Spotlight

Advertisements